scholarly journals Factors affecting susceptibility of Staphylococcus aureus to antibacterial agents

2012 ◽  
Vol 54 (2) ◽  
pp. 86-91 ◽  
Author(s):  
Miki Kawada-Matsuo ◽  
Hitoshi Komatsuzawa
2021 ◽  
Vol 22 (13) ◽  
pp. 7202
Author(s):  
Tamara Bruna ◽  
Francisca Maldonado-Bravo ◽  
Paul Jara ◽  
Nelson Caro

Silver nanoparticles (AgNPs) have been imposed as an excellent antimicrobial agent being able to combat bacteria in vitro and in vivo causing infections. The antibacterial capacity of AgNPs covers Gram-negative and Gram-positive bacteria, including multidrug resistant strains. AgNPs exhibit multiple and simultaneous mechanisms of action and in combination with antibacterial agents as organic compounds or antibiotics it has shown synergistic effect against pathogens bacteria such as Escherichia coli and Staphylococcus aureus. The characteristics of silver nanoparticles make them suitable for their application in medical and healthcare products where they may treat infections or prevent them efficiently. With the urgent need for new efficient antibacterial agents, this review aims to establish factors affecting antibacterial and cytotoxic effects of silver nanoparticles, as well as to expose the advantages of using AgNPs as new antibacterial agents in combination with antibiotic, which will reduce the dosage needed and prevent secondary effects associated to both.


2016 ◽  
Vol 79 (1) ◽  
pp. 148-152 ◽  
Author(s):  
TIAN DING ◽  
YAN-YAN YU ◽  
CHENG-AN HWANG ◽  
QING-LI DONG ◽  
SHI-GUO CHEN ◽  
...  

ABSTRACT The objectives of this study were to develop a probability model of Staphylococcus aureus enterotoxin A (SEA) production as affected by water activity (aw), pH, and temperature in broth and assess its applicability for milk. The probability of SEA production was assessed in tryptic soy broth using 24 combinations of aw (0.86 to 0.99), pH (5.0 to 7.0), and storage temperature (10 to 30°C). The observed probabilities were fitted with a logistic regression to develop a probability model. The model had a concordant value of 97.5% and concordant index of 0.98, indicating that the model satisfactorily describes the probability of SEA production. The model showed that aw, pH, and temperature were significant factors affecting the probability of toxin production. The model predictions were in good agreement with the observed values obtained from milk. The model may help manufacturers in selecting product pH and aw and storage temperatures to prevent SEA production.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Mark Fenton ◽  
Ruth Keary ◽  
Olivia McAuliffe ◽  
R. Paul Ross ◽  
Jim O'Mahony ◽  
...  

New antibacterial agents are urgently needed for the elimination of biofilm-forming bacteria that are highly resistant to traditional antimicrobial agents. Proliferation of such bacteria can lead to significant economic losses in the agri-food sector. This study demonstrates the potential of the bacteriophage-derived peptidase,CHAPK, as a biocidal agent for the rapid disruption of biofilm-forming staphylococci, commonly associated with bovine mastitis. PurifiedCHAPKapplied to biofilms ofStaphylococcus aureusDPC5246 completely eliminated the staphylococcal biofilms within 4 h. In addition,CHAPKwas able to prevent biofilm formation by this strain. TheCHAPKlysin also reducedS. aureusin a skin decolonization model. Our data demonstrates the potential ofCHAPKas a biocidal agent for prevention and treatment of biofilm-associated staphylococcal infections or as a decontaminating agent in the food and healthcare sectors.


Antibiotics ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 60 ◽  
Author(s):  
Franziska Kampshoff ◽  
Mark D. P. Willcox ◽  
Debarun Dutta

Background: Frequent and unrestricted use of antibiotics has been associated with the development of antibiotic resistance by microorganisms. Thus, there is a need to find novel antibacterial agents or a combination of agents as the first line of treatment for various infections. This study aimed to investigate the synergy between antimicrobial peptide (AMP) combinations or between AMP-antibiotics combinations using two common pathogens, Pseudomonas aeruginosa and Staphylococcus aureus. Methods: The AMPs melimine, Mel4 and protamine, and antibiotics cefepime and ciprofloxacin were used in this study. The minimum inhibitory concentration (MIC) of each were evaluated against P. aeruginosa and S. aureus strains by a microtiter broth dilution. Based on the MIC of each antimicrobial agent, a checkerboard assay was performed to investigate the synergy between them, which was expressed as the fractional inhibitory concentration (FIC). Results: The combination of melimine and ciprofloxacin showed synergistic activity against antibiotic sensitive or resistant strains of P. aeruginosa and with FIC values ≤0.5. Conclusion: Combinations of AMPs and the fluoroquinolone ciprofloxacin is a promising method for reducing resistance to the fluoroquinolone of P. aeruginosa.


2019 ◽  
Vol 92 ◽  
pp. 103252 ◽  
Author(s):  
Srikanth Gatadi ◽  
Y.V. Madhavi ◽  
Sidharth Chopra ◽  
Srinivas Nanduri

2020 ◽  
Vol 103 (8) ◽  
pp. 6869-6881 ◽  
Author(s):  
Anas A. Al-Nabulsi ◽  
Tareq M. Osaili ◽  
Roa A. AbuNaser ◽  
Amin N. Olaimat ◽  
Mutamed Ayyash ◽  
...  

2017 ◽  
Vol 23 (3) ◽  
pp. 197-203 ◽  
Author(s):  
Shaikha S. Alneyadi ◽  
Anas A. Abdulqader ◽  
Alaa A. Salem ◽  
Ibrahim M. Abdou

Abstract4-Trifluoromethylpyridine derivatives 4–8 represent good candidates for the discovery of new antibacterial agents. Fluorinated pyridine nucleosides 4–7 and non-nucleoside analogues 8a,b were synthesized and evaluated for their antibacterial activities against Staphylococcus aureus, Bacillus infantis, Escherichia coli and Stenotrophomonas maltophilia. The minimum inhibitory concentrations (MICs) of the new nucleosides 4–7 range from 1.3 to 4.9 μg/mL and MICs of fluoroaryl derivatives 8a,b are in the range of 1.8–5.5 μg/mL. Activity of amoxicillin, the reference drug, is 1.0–2.0 μg/mL under similar conditions.


Sign in / Sign up

Export Citation Format

Share Document