scholarly journals Lycopene reduces deltamethrin effects induced thyroid toxicity and DNA damage in albino rats

2013 ◽  
Vol 66 (4) ◽  
pp. 155-163 ◽  
Author(s):  
Manal Abdul-Hamid ◽  
Marwa Salah
2015 ◽  
Vol 6 ◽  
Author(s):  
Goktas Hatice ◽  
Bacanli Merve ◽  
Aydin Sevtap ◽  
Taner Gokce ◽  
Sahin Tolga ◽  
...  

2016 ◽  
Vol 35 (8) ◽  
pp. 877-886 ◽  
Author(s):  
M Bacanlı ◽  
S Aydın ◽  
G Taner ◽  
HG Göktaş ◽  
T Şahin ◽  
...  

Reactive oxygen species are believed to be involved in the development of sepsis. Plant-derived phenolic compounds are thought to be possible therapeutic agents against sepsis because of their antioxidant properties. Rosmarinic acid (RA) is a phenolic compound commonly found in various plants, which has many biological activities including antioxidant activity. The aim of this study was to investigate the effects of RA on sepsis-induced DNA damage in the lymphocytes and liver and kidney cells of Wistar albino rats by alkaline comet assay with and without formamidopyrimidine DNA glycosylase protein. The oxidative stress parameters such as superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities and total glutathione (GSH) and malondialdehyde (MDA) levels in the liver and kidney tissues and an inflammatory cytokine, tumor necrosis factor α (TNF-α) level in plasma were also evaluated. It is found that DNA damage in the lymphocytes, livers, and kidneys of the RA-treated rats was significantly lower than that in the sepsis-induced rats. RA treatment also decreased the MDA levels and increased the GSH levels and SOD and GSH-Px activities in the livers and kidneys of the sepsis-induced rats. Plasma TNF-α level was found to be decreased in the RA-treated rats. It seems that RA might have a role in the attenuation of sepsis-induced oxidative damage not only by decreasing the DNA damage but also by increasing the antioxidant status and DNA repair capacity of the animals.


2020 ◽  
Vol 7 ◽  
Author(s):  
Sabiha Fatima ◽  
Syed Shams Zaidi ◽  
Ashwag Saleh Alsharidah ◽  
Feda S. Aljaser ◽  
Naheed Banu

SARS-CoV-2, an epidemic, causes severe stress in both human and animals and may induce oxidative stress (OS) and increases susceptibility to infection. Domestic animals are found infected by their COVID-2 suffering owners. Chronic immobilization stress (CIS), a model of psychological and physical stress of confinement, can trigger depression and anxiety in animals. We evaluated the ameliorative effect of the proposed SARS-CoV-2 prophylactic drugs melatonin, vitamin C, and zinc on CIS-induced OS, inflammation, and DNA damage in rats. Forty male Swiss albino rats (200–250 g, 7–9 weeks old) were divided into five groups as controls, CIS, treated with melatonin (20 mg/kg), and vitamin C plus zinc [VitC+Zn (250 + 2.5 mg/kg)] alone or in combination (melatonin+VitC+zinc) subjected to CIS for 3 weeks. CIS was induced by immobilizing the whole body of the rats in wire mesh cages of their size with free movement of head. Exposure to CIS significantly compromised the circulatory activities of superoxide dismutase, catalase, and glutathione with enhanced malondialdehyde, inflammatory markers (IL-6, IL10, and TNFα), and lymphocyte DNA damage in comparison to controls. Treatment with melatonin and VitC+Zn alone or in combination significantly restored the altered biochemical parameters and DNA damage of stressed rats to their respective control values. However, the cumulative action of melatonin with VitC+Zn was more effective in alleviating the CIS-induced OS, inflammation, and DNA damage. The present study indicates that the antioxidant combination can be an effective preventive measure to combat severe psychological and confinement stress-induced biochemical changes in animals due to abnormal conditions such as SARS-CoV-2.


2006 ◽  
Vol 164 ◽  
pp. S44
Author(s):  
Sundaramahalingam Manikandan ◽  
Narayanaperumal Jeya Parthasarathy ◽  
Ramasamy Srikumar ◽  
Rathinasamy Sheeladevi

2013 ◽  
Vol 221 ◽  
pp. S125 ◽  
Author(s):  
M. Bacanlı ◽  
S. Aydın ◽  
G. Taner ◽  
T. Şahin ◽  
A.A. Başaran ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Ismail Koyuncu ◽  
Abdurrahim Kocyigit ◽  
Ataman Gonel ◽  
Erkan Arslan ◽  
Mustafa Durgun

The aim of this study is to examine the protective effect of naringenin-oxime (NOX) on cisplatin-induced major organ toxicity and DNA damage in rats. Thirty-five male Wistar albino rats were equally split into five groups as follows: control (i.p., 0.1 ml of saline), Cis administration (i.p., 7 mg/kg b.w.), NOX treatment (i.p., 20 mg/kg b.w., daily for ten days), Cis + NOX20, and Cis + NOX40 combination (i.p., 20 and 40 mg/kg b.w., daily for ten days). Serum and peripheral blood mononuclear leukocytes (PBMC) were obtained from blood. Malondialdehyde, glutathione, total antioxidant and oxidant status, and catalase were measured in serum, liver, and kidney, and oxidative stress index was calculated. In parallel, paraoxonase and arylesterase activities were tested in liver and serum. We used 8-OHdOG as a marker for DNA damage in serum via ELISA and in PMBC via comet assay. Treatment with Cis elevated the levels of serum biochemical parameters, oxidative stress, and DNA damage. Pretreatments of NOX restored biochemical and oxidative stress parameters in serum, renal, and liver tissues (p<0.01) and reduced 8-OHdG level, a finding further supported by comet assay in PBMC. Observations of the present study support the fact that treatment with NOX prevents Cis-induced hepatotoxicity, nephrotoxicity, and genotoxicity by restoring antioxidant system.


2018 ◽  
Vol 38 (3) ◽  
pp. 321-335 ◽  
Author(s):  
MA Mohammed ◽  
BE Aboulhoda ◽  
RH Mahmoud

Background: Despite being one of the most nephrotoxic drugs, gentamicin (GM) remains a mainstay as a first-choice agent in a vast variety of clinical situations owing to its superlative efficiency as a broad-spectrum antibiotic in treating several life-threatening bacterial infections. This urgently calls for the need for in-depth analysis of the mechanisms governing GM-induced nephrotoxicity and entails the necessity of presenting novel protective agents capable of ameliorating those renal deleterious effects. The reactive oxygen species and redox-sensitive transcription factors in GM-induced nephrotoxicity have recently called attention. Purpose: This study has been designed to shed light on the possible mechanisms of GM-induced nephrotoxicity and to provide a consensus set of histopathological, immunohistochemical, genetic and biochemical parameters elucidating the protective role of vitamin D against this nephrotoxicity. Methods: Twenty-four adult male albino rats were equally divided into four groups: group I (control group), group II (GM), group III (GM + vitamin D) and group IV (vitamin D only). Kidney function tests, histopathological examination, gene expression of nuclear factor 2, nuclear factor kappa beta (NF-κB) and western blot of NF-κB p65, assessment of glutathione peroxidase and nicotinamide adenine dinucleotide phosphate oxidase (NADPH) oxidase by ELISA, as well as immunohistochemical evaluation of inducible nitric oxide, malondialdehyde, 8-hydroxy 2 deoxyguanine and vitamin D receptor, have been carried out. Results: The kidney function deterioration, tissue oxidative stress development and the histopathological changes induced by GM were significantly attenuated by vitamin D administration. Conclusion: Vitamin D attenuates GM nephrotoxicity through its antioxidant properties and prevention of DNA damage.


Sign in / Sign up

Export Citation Format

Share Document