Does rosmarinic acid treatment have protective role against sepsis-induced oxidative damage in Wistar Albino rats?

2016 ◽  
Vol 35 (8) ◽  
pp. 877-886 ◽  
Author(s):  
M Bacanlı ◽  
S Aydın ◽  
G Taner ◽  
HG Göktaş ◽  
T Şahin ◽  
...  

Reactive oxygen species are believed to be involved in the development of sepsis. Plant-derived phenolic compounds are thought to be possible therapeutic agents against sepsis because of their antioxidant properties. Rosmarinic acid (RA) is a phenolic compound commonly found in various plants, which has many biological activities including antioxidant activity. The aim of this study was to investigate the effects of RA on sepsis-induced DNA damage in the lymphocytes and liver and kidney cells of Wistar albino rats by alkaline comet assay with and without formamidopyrimidine DNA glycosylase protein. The oxidative stress parameters such as superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities and total glutathione (GSH) and malondialdehyde (MDA) levels in the liver and kidney tissues and an inflammatory cytokine, tumor necrosis factor α (TNF-α) level in plasma were also evaluated. It is found that DNA damage in the lymphocytes, livers, and kidneys of the RA-treated rats was significantly lower than that in the sepsis-induced rats. RA treatment also decreased the MDA levels and increased the GSH levels and SOD and GSH-Px activities in the livers and kidneys of the sepsis-induced rats. Plasma TNF-α level was found to be decreased in the RA-treated rats. It seems that RA might have a role in the attenuation of sepsis-induced oxidative damage not only by decreasing the DNA damage but also by increasing the antioxidant status and DNA repair capacity of the animals.

2015 ◽  
Vol 6 ◽  
Author(s):  
Goktas Hatice ◽  
Bacanli Merve ◽  
Aydin Sevtap ◽  
Taner Gokce ◽  
Sahin Tolga ◽  
...  

2013 ◽  
Vol 221 ◽  
pp. S125 ◽  
Author(s):  
M. Bacanlı ◽  
S. Aydın ◽  
G. Taner ◽  
T. Şahin ◽  
A.A. Başaran ◽  
...  

2014 ◽  
Vol 38 (3) ◽  
pp. 774-782 ◽  
Author(s):  
Merve Bacanlı ◽  
Sevtap Aydın ◽  
Gökçe Taner ◽  
Hatice Gül Göktaş ◽  
Tolga Şahin ◽  
...  

2020 ◽  
Vol 34 (11) ◽  
Author(s):  
Azem A. Khalaf ◽  
Eman I. Hassanen ◽  
Marwa A. Ibrahim ◽  
Adel F. Tohamy ◽  
Mahmoud A. Aboseada ◽  
...  

2018 ◽  
Vol 96 (1) ◽  
pp. 32-37 ◽  
Author(s):  
Parisa Hasanein ◽  
Rosa Seifi

Alcohol is a severe hepatotoxicant that causes a variety of liver disorders. Rosmarinic acid (RA), a natural phenol, shows some biological activities, including antioxidant and anti-inflammatory effects. We investigated the effects of RA (10 mg/kg) against ethanol-induced oxidative damage and hepatotoxicity in rats. Animals received ethanol (4 g/kg, i.g.) and (or) RA (10 mg/kg, i.g.) daily for 4 weeks. At the end of the treatment period, rats were weighed and use for biochemical, molecular, and histopathological examinations. Ethanol increased hepatic lipid peroxidation (P < 0.001) and decreased hepatic levels of reduced glutathione (P < 0.01), catalase (P < 0.05), and superoxide dismutase (P < 0.001) compared with control group. RA prevented the prooxidant and antioxidant imbalance induced by ethanol in liver. Furthermore, RA ameliorated the increased liver mass, serum levels of ALT, AST, LDH, TNF-α, and IL-6 in ethanol group. Necrosis and infiltration of inflammatory cells in liver parenchyma were attenuated by RA treatment. Our findings showed that RA prevents ethanol-induced oxidant/antioxidant imbalance and liver injury in an experimental model of ethanol-induced hepatotoxicity. Therefore, RA may be a good candidate to protect against ethanol-induced hepatotoxicity; this deserves consideration and further examination.


2015 ◽  
Vol 35 (4) ◽  
pp. 1326-1334 ◽  
Author(s):  
Saritha Marella ◽  
Dilip Rajasekhar Maddirela ◽  
Kameswara Rao Badri ◽  
Malaka Venkateshwarulu Jyothi Kumar ◽  
Apparao Chippada

Background: This study was aimed to evaluate the protective effects of a novel anti-hyperglycemic “Mcy protein” isolated from the fruits of Momordica cymbalaria in streptozotocin induced- diabetes rat model. Materials and Methods: Wild type and Streptozotocin induced diabetic male wistar albino rats were either treated with single intraperitoneal injection of 2.5 mg Mcy protein/kg body weight or acetate buffer daily for 30 days. Fasting blood glucose and, serum and tissue lipid levels were measured along with biochemical analysis for hepatic and renal function tests. Results: Mcy protein significantly reduced the fasting blood glucose and, serum as well as tissue lipid levels (p<0.05), besides normalizing the levels of liver and kidney function markers in the treated diabetic rats when compared to the diabetic controls. Our studies also showed the pancreatic islet regeneration in Mcy treated rats. Conclusion: Mcy protein can alleviate hyperlipidemia and help manage diabetes by stimulating insulin secretion without evident toxic effects on liver and kidney.


2022 ◽  
Vol 16 (1) ◽  
pp. 63-72
Author(s):  
Abba Aji Manu ◽  
◽  
Bello Muhammad Musa ◽  
Martha Orendu Oche Attah ◽  
Helga Ishaya Bedan ◽  
...  

Background: The therapeutic value of Syzygium cumini (S. cumini) has been documented in traditional medicine for the treatment of many diseases and ailments. Various preparations of this plant have been made and used especially for liver inflammatory conditions in livestock. Further, many liver diseases in humans are inflammatory conditions, which are caused by alcohol intake. This study sought to examine the effect of S. cumini on ethanol-induced hepatotoxicity in Wistar albino rats. Methods: Twenty-five rats were divided into five groups of five rats each. The first group was control and the other four were administered ethanol at varying doses to induce liver and kidney damages. Two doses of the S. cumini extract were administered at a concentration of 200 mg/kg or 400 mg/kg. Silymarin was administered to the last group at 10 mg/kg. The liver and kidney tissue samples were collected and preserved for histological analyses and the rat sera were analyzed for the associated biochemical biomarkers. Results: Histopathological analyses revealed pyknotic nuclei and distortion in the arrangement of the hepatocytes in extract-treated groups. The kidney tissue samples showed signs of interstitial bleeding and aggregation of lymphocytes in the peri-glomerular areas. The analyses of the biochemical parameters revealed that there were significant increases in the aspartate aminotransferase (AST), alanine transaminase (ALT), Urea and creatinine in the sera of the groups treated with the extract compared to those of the controls (P<0.05). Conclusion: The S. cumini extract caused elevation of serum hepatic and renal biomarkers at 400 mg/kg and did not have a hepatoprotective effect.


2018 ◽  
Vol 61 (4) ◽  
pp. 144-149 ◽  
Author(s):  
Aysel Kurt ◽  
Yildiray Kalkan ◽  
Hasan Turut ◽  
Medine Cumhur Cure ◽  
Levent Tumkaya ◽  
...  

Background: Topiramate (TPM) decreases cytokine release and generation of reactive oxygen species (ROS). Cytokine and endothelin-1 (ET-1) secretion and ROS formation play an important role in ischemia-reperfusion (I/R) injury. We aimed to evaluate whether TPM prevents damage occurring in lung tissue during I/R. Materials and Methods: A total of 27 Wistar albino rats were divided into three groups of nine. To the I/R group, two hours of ischemia via infrarenal abdominal aorta cross-ligation and then two hours of reperfusion process were applied. TPM (100 mg/kg/day) orally for seven days was administered in the TPM treatment group. After the last dose of TPM treatment, respectively, two hours of ischemia and two hours of reperfusion were applied in this group. Results: Tumor necrosis factor-alpha (TNF-α) (p < 0.05), malondialdehyde (MDA) (p < 0.05), myeloperoxidase (MPO) (p < 0.05) and ET-1 (p < 0.05) levels of TPM treatment group’s lung tissue were significantly lower than for the I/R group. Caspase-3 and histopathological damage were rather lower than that of the I/R group. Conclusions: During I/R, lung damage occurs due to excessive TNF-α and ET-1 release and ROS generation. TPM could well reduce development of lung damage by decreasing cytokine and ET-1 release and levels of ROS produced.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Fatma Kermeoğlu ◽  
Umut Aksoy ◽  
Abdullah Sebai ◽  
Gökçe Savtekin ◽  
Hanife Özkayalar ◽  
...  

Aim. The aim of this study was to investigate the possible therapeutic impacts of two pineal hormones, melatonin and 5-methoxytryptophol (5-MTX), in a rat model of acute pulpitis by analyzing biochemical and histopathological parameters. Methods. This research was done using 32 male and female Wistar albino rats with weight between 200 and 250 g. The rats were randomly divided into four groups: a control group (rats without any treatment), acute pulpitis (AP) group, AP+melatonin group, and AP+5-MTX group. In the AP-induced groups, the crowns of the upper left incisors were removed horizontally. Lipopolysaccharide solution was applied to the exposed pulp tissue before the canal orifices were sealed with a temporary filling material. Melatonin (10 mg/kg) and 5-MTX (5 mg/kg) were administered intraperitoneally. The rats were sacrificed 24 hours after pulp injury, and trunk blood and pulp samples were collected. The concentrations of TNF-α, IL-1β, MMP-1, and MMP-2 in sera and pulp samples were determined using ELISA assay kits. Results. TNF-α, IL-1β, MMP-1, and MMP-2 levels in the serum and pulp tissues were considerably higher in the AP group than the control group ( p < 0.01 ‐ 0.001 ). In the AP+melatonin and AP+5-MTX groups, TNF-α, IL-1β, MMP-1, and MMP-2 levels in the serum and pulp tissues were significantly lower than in the AP group ( p < 0.05 ‐ 0.001 ). Conclusions. Both melatonin and 5-MTX provided protective effects on acute pulpitis, which indicates they may be promising as a therapeutic strategy for oral disease.


Biomolecules ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 892 ◽  
Author(s):  
Rade Vukovic ◽  
Igor Kumburovic ◽  
Jovana Joksimovic Jovic ◽  
Nemanja Jovicic ◽  
Jelena S. Katanic Stankovic ◽  
...  

Since cisplatin therapy is usually accompanied with numerous toxicities, including neurotoxicity, that involve tissue oxidative damage, the aim of this study was to evaluate the possible protective effect of N-acetylcysteine (NAC) on the anxiogenic response to cisplatin (CIS). Thirty-two male Wistar albino rats divided into four groups (control, cisplatin, NAC, and CIS + NAC). All treatments were delivered intraperitoneally. On day one, the control and cisplatin groups received saline while the NAC and CIS + NAC groups were administered with NAC (500 mg/kg). On the fifth day, the control group received saline while the CIS group was treated with cisplatin (7.5 mg/kg), the NAC group again received NAC (500 mg/kg), and the CIS + NAC group was simultaneously treated with cisplatin and NAC (7.5 and 500 mg/kg, respectively). Behavioral testing, performed on the tenth day in the open field (OF) and elevated plus maze (EPM) tests, revealed the anxiogenic effect of cisplatin that was significantly attenuated by NAC. The hippocampal sections evaluation showed increased oxidative stress (increased lipid peroxidation and decline in antioxidant enzymes activity) and proapoptotic action (predominantly by diminished antiapoptotic gene expression) following a single dose of cisplatin. NAC supplementation along with cisplatin administration reversed the prooxidative and proapoptotic effects of cisplatin. In conclusion, the results obtained in this study confirmed that antioxidant supplementation with NAC may attenuate the cisplatin-induced anxiety. The mechanism of anxiolytic effect achieved by NAC may include the decline in oxidative damage that down regulates increased apoptosis and reverses the anxiogenic action of cisplatin.


Sign in / Sign up

Export Citation Format

Share Document