scholarly journals Experimental-simulation methodology for estimation of thermal parameters of adaptive facades in mild climate conditions: A water-flow glazing case study

2021 ◽  
pp. 103384
Author(s):  
Luis J. Claros-Marfil ◽  
Vicente Zetola ◽  
J. Francisco Padial ◽  
Benito Lauret
Author(s):  
Ahad Nejad Ebrahimi ◽  
Farnaz Nazarzadeh ◽  
Elnaz Nazarzadeh

Throughout history, gardens and garden designing has been in the attention of Persian architects who had special expertise in the construction of gardens. The appearance of Islam and allegories of paradise taken from that in Koran and Saints’ sayings gave spirituality to garden construction. Climate conditions have also had an important role in this respect but little research has been done about it and most of the investigations have referred to spiritual aspects and forms of garden. The cold and dry climate that has enveloped parts of West and North West of Iran has many gardens with different forms and functions, which have not been paid much attention to by studies done so far. The aim of this paper is to identify the features and specifications of cold and dry climate gardens with an emphasis on Tabriz’s Gardens.  Due to its natural and strategic situation, Tabriz has always been in the attention of governments throughout history; travellers and tourists have mentioned Tabriz as a city that has beautiful gardens. But, the earthquakes and wars have left no remains of those beautiful gardens. This investigation, by a comparative study of the climates in Iran and the effect of those climates on the formation of gardens and garden design, tries to identify the features and characteristics of gardens in cold and dry climate. The method of study is interpretive-historical on the basis of written documents and historic features and field study of existing gardens in this climate. The results show that, with respect to natural substrate, vegetation, the form of water supply, and the general form of the garden; gardens in dry and cold climate are different from gardens in other climates.


2021 ◽  
Vol 13 (5) ◽  
pp. 923
Author(s):  
Qianqian Sun ◽  
Chao Liu ◽  
Tianyang Chen ◽  
Anbing Zhang

Vegetation fluctuation is sensitive to climate change, and this response exhibits a time lag. Traditionally, scholars estimated this lag effect by considering the immediate prior lag (e.g., where vegetation in the current month is impacted by the climate in a certain prior month) or the lag accumulation (e.g., where vegetation in the current month is impacted by the last several months). The essence of these two methods is that vegetation growth is impacted by climate conditions in the prior period or several consecutive previous periods, which fails to consider the different impacts coming from each of those prior periods. Therefore, this study proposed a new approach, the weighted time-lag method, in detecting the lag effect of climate conditions coming from different prior periods. Essentially, the new method is a generalized extension of the lag-accumulation method. However, the new method detects how many prior periods need to be considered and, most importantly, the differentiated climate impact on vegetation growth in each of the determined prior periods. We tested the performance of the new method in the Loess Plateau by comparing various lag detection methods by using the linear model between the climate factors and the normalized difference vegetation index (NDVI). The case study confirmed four main findings: (1) the response of vegetation growth exhibits time lag to both precipitation and temperature; (2) there are apparent differences in the time lag effect detected by various methods, but the weighted time-lag method produced the highest determination coefficient (R2) in the linear model and provided the most specific lag pattern over the determined prior periods; (3) the vegetation growth is most sensitive to climate factors in the current month and the last month in the Loess Plateau but reflects a varied of responses to other prior months; and (4) the impact of temperature on vegetation growth is higher than that of precipitation. The new method provides a much more precise detection of the lag effect of climate change on vegetation growth and makes a smart decision about soil conservation and ecological restoration after severe climate events, such as long-lasting drought or flooding.


Author(s):  
Kara G. Cafferty ◽  
David J. Muth ◽  
Jacob J. Jacobson ◽  
Kenneth M. Bryden

Engineering feedstock supply systems that deliver affordable, high-quality biomass remains a challenge for the emerging bioenergy industry. Cellulosic biomass is geographically distributed and has diverse physical and chemical properties. Because of this feedstock supply systems that deliver cellulosic biomass resources to biorefineries require integration of a broad set of engineered unit operations. These unit operations include harvest and collection, storage, preprocessing, and transportation processes. Design decisions for each feedstock supply system unit operation impact the engineering design and performance of the other system elements. These interdependencies are further complicated by spatial and temporal variances such as climate conditions and biomass characteristics. This paper develops an integrated model that couples a SQL-based data management engine and systems dynamics models to design and evaluate biomass feedstock supply systems. The integrated model, called the Biomass Logistics Model (BLM), includes a suite of databases that provide 1) engineering performance data for hundreds of equipment systems, 2) spatially explicit labor cost datasets, and 3) local tax and regulation data. The BLM analytic engine is built in the systems dynamics software package Powersim™. The BLM is designed to work with thermochemical and biochemical based biofuel conversion platforms and accommodates a range of cellulosic biomass types (i.e., herbaceous residues, short-rotation woody and herbaceous energy crops, woody residues, algae, etc.). The BLM simulates the flow of biomass through the entire supply chain, tracking changes in feedstock characteristics (i.e., moisture content, dry matter, ash content, and dry bulk density) as influenced by the various operations in the supply chain. By accounting for all of the equipment that comes into contact with biomass from the point of harvest to the throat of the conversion facility and the change in characteristics, the BLM evaluates economic performance of the engineered system, as well as determining energy consumption and green house gas performance of the design. This paper presents a BLM case study delivering corn stover to produce cellulosic ethanol. The case study utilizes the BLM to model the performance of several feedstock supply system designs. The case study also explores the impact of temporal variations in climate conditions to test the sensitivity of the engineering designs. Results from the case study show that under certain conditions corn stover can be delivered to the cellulosic ethanol biorefinery for $35/dry ton.


Author(s):  
Ivo Machar ◽  
Marián Halás ◽  
Zdeněk Opršal

Regional climate changes impacts induce vegetation zones shift to higher altitudes in temperate landscape. This paper deals with applying of regional biogeography model of climate conditions for vegetation zones in Czechia to doctoral programme Regional Geography in Palacky University Olomouc. The model is based on general knowledge of landscape vegetation zonation. Climate data for model come from predicted validated climate database under RCP8.5 scenario since 2100. Ecological data are included in the Biogeography Register database (geobiocoenological data related to landscape for cadastral areas of the Czech Republic). Mathematical principles of modelling are based on set of software solutions with GIS. Students use the model in the frame of the course “Special Approaches to Landscape Research” not only for regional scenarios climate change impacts in landscape scale, but also for assessment of climate conditions for growing capability of agricultural crops or forest trees under climate change on regional level.


Author(s):  
Oscar Zapata

Abstract Changes in climatic patterns are expected to have significant effects on health and wellbeing. However, the literature on the effect of climate on subjective wellbeing remains scant and existing studies focus mostly on developed countries or cross-country analyses. This paper aims to identify the relationship between climate conditions on happiness after controlling for individual and social characteristics. Ecuador, a geographically fragmented country with varying climate conditions across municipalities, constitutes an ideal case study to assess the effect of climate variables on happiness. We employ a cross-section analysis to identify the effect of temperature, precipitation and humidity on happiness. The paper shows that climate conditions constitute an important determinant of people's subjective wellbeing. The results also suggest that income and education attenuate the effect of temperature on happiness and that substantial differences are observed depending on whether places are hot/humid or cold/dry.


Sign in / Sign up

Export Citation Format

Share Document