The relationship of lower body strength and functioning with trajectories of stair use frequency over 6 years in adults with or at risk for knee osteoarthritis

2021 ◽  
Vol 29 ◽  
pp. S283-S284
Author(s):  
J.T. Jakiela ◽  
D. Voinier ◽  
T. Bye ◽  
M. Tukis ◽  
J. Corey ◽  
...  
Kinesiology ◽  
2019 ◽  
Vol 51 (2) ◽  
pp. 238-245
Author(s):  
Hamid Arazi ◽  
Ehsan Eghbali

2D:4D ratio is determined by balance between androgens and estrogens. Low level estrogen reduces bone mineral density (BMD) and incurs negative changes to bone microarchitecture, increasing the risk of osteoporosis and, as a consequence, fracture risk in women. The purpose of this study was to investigate the relationship between 2D:4D, muscle strength and body composition to BMD in young women. One hundred twenty-seven young women (age range 24-36 years) voluntarily participated in this study. Lengths of the second (index) and fourth (ring) fingers, upper and lower body strength and body composition (body mass index, BMI; waist to hip ratio, WHR) and body fat percentage were estimated. Also, blood levels of calcium and 25-hydroxyvitamin D (25OHD) were evaluated and dual-energy X-ray absorptiometry device was used to measure BMD in the lumbar spine (LS) and femoral neck (FN). The results showed that digit ratios, upper body and lower body muscle strength, BMI and fat percentage had a positive relationship with LS and FN BMD (LS BMD: r=.47, r=.56, r=.46, r=.34, r=.28, p≤.001, respectively; FN BMD: r=.34, r=.49, r=.51, r=.45, r=.27, p≤.001, respectively). In addition, there was no significant relationship between WHR and BMD of LS and FN (p˃.05). Multiple linear regression analysis showed the upper body strength was a stronger determinant of LS BMD and the lower body strength was a stronger determinant of FN BMD. Based on the results, the researchers concluded that upper and lower body strength, 2D:4D ratios and BMI were important determinants of young women’s BMD. Also, it seemed that some of these factors may be able to help predicting the osteoporosis potential in young women


Author(s):  
Tim J. Mosey ◽  
Lachlan J.G. Mitchell

Objectives: The purpose of this study was to document the longitudinal strength and power characteristic changes and race performance changes of a skeleton athlete. Method: Longitudinal strength and power changes were assessed with strength and power diagnostic testing over a 9-year period. Trends over 9 years for relative strength were analyzed using a linear model. Push-start time was recorded across multiple tracks. Trends over 9 years for start performance at each track were assessed using a mixed-effects linear model to account for the impact of different tracks. Lower-body strength and power changes were assessed via a 1-repetition-maximum squat and a body-weight countermovement jump. The relationship between strength and power changes was assessed over time. The relationship between strength changes and start performance was determined by assessing the fixed effect of relative strength changes on push-start time. Results: Relative lower-body strength ranged from 1.6 kg per body weight to 1.9 kg per body weight and showed a significant mean improvement of 0.05 kg per body weight per year (R2 = .71, P < .01). A negative correlation (R2 = .79) between relative strength changes and push-start performance across multiple tracks was found. The mixed-effects model indicated that push-start time improved significantly year to year (0.02 s; P < .001; R2 = .74) when controlling for the effect of track. Conclusions: The longitudinal analysis of push-start time and the associations with changes in strength suggest that training this quality can have a positive effect on push-start performance.


1999 ◽  
Vol 31 (Supplement) ◽  
pp. S77
Author(s):  
A. Caterisano ◽  
C. W. Brown ◽  
L. P. Thurmond ◽  
D. R. Perkins ◽  
K. B. Linn ◽  
...  

2018 ◽  
Vol 13 (6) ◽  
pp. 770-776 ◽  
Author(s):  
Michael J.A. Speranza ◽  
Tim J. Gabbett ◽  
David A. Greene ◽  
Rich D. Johnston ◽  
Andrew D. Townshend

This study investigated the relationship between 2 different assessments of tackling ability, physical qualities, and match-play performance in semiprofessional rugby league players. A total of 18 semiprofessional rugby league players (mean [SD]: age = 23.1 [2.0] y and body mass = 98.8 [11.8] kg) underwent tests of upper- and lower-body strength and power. Tackling ability was assessed using video analysis of under- and over-the-ball tackle drills. A total of 2360 tackles were analyzed from match play. Over-the-ball tackle ability was positively related to the proportion of dominant tackles (Spearman rank-order correlation coefficients [rs] = .52; 95% confidence interval [CI] .07–.79, P = .03) and average play-the-ball speeds (rs = .50; 95% CI .04–.78, P = .03) and negatively related to tackles that conceded offloads (rs = −.55; 95% CI −.78 to .04, P = .04). Under-the-ball tackle ability was significantly related to the proportion of dominant tackles (rs = .57; 95% CI .14–.82, P = .01) and missed tackles (rs = −.48; 95% CI −.77 to .02, P = .05). Good over-the-ball tacklers performed proportionally more dominant tackles, allowed significantly fewer offloads, and had longer average play-the-ball speeds. Good under-the-ball tacklers missed proportionately fewer tackles. This study suggests that both the under-the-ball and over-the-ball standardized tackle assessments are associated with varying indicators of match-play tackle performance and justifies the practical utility of these tests to assess and develop both types of tackles.


2015 ◽  
Vol 23 (3) ◽  
pp. 444-451 ◽  
Author(s):  
Daniele Magistro ◽  
Filippo Candela ◽  
Paolo Riccardo Brustio ◽  
Monica Emma Liubicich ◽  
Emanuela Rabaglietti

Functional aging processes are characterized by a loss of performance capabilities for most physiological systems, such as aerobic endurance and lower body strength, which are important for independent living and active aging. The present study examines the direction of influence between aerobic endurance and lower body strength over time in Italian sedentary older adults. A three-wave longitudinal model was tested using cross-lagged analysis for 202 individuals aged over 65 years (mean = 73.92, SD = 5.84; 140 females). Analysis revealed that aerobic endurance and lower body strength decline over time. In addition, greater aerobic endurance positively affected lower body strength over time; however, the converse was true only during the first period (first 6 months). These findings emphasize the importance of these relationships for the design and implementation of effective physical intervention for older adults.


2019 ◽  
Vol 14 (8) ◽  
pp. 1043-1049
Author(s):  
Rich D. Johnston

Purpose: To explore the relationship between technical errors during rugby league games, match success, and physical characteristics. Methods: A total of 27 semiprofessional rugby league players participated in this study (24.8 [2.5] y, 183.5 [5.3] cm, 97.1 [11.6] kg). Aerobic fitness, strength, and power were assessed prior to the start of the competitive season before technical performance was tracked during 22 competitive fixtures. Attacking errors were determined as any error that occurred in possession of the ball that resulted in a handover to the opposition. Defensive errors included line breaks, penalties, and missed or ineffective tackles. Match outcome, the zone on the field in which each error occurred, and the number of errors in an error chain (≤60 s between errors) were assessed. Results: During a loss, there were more defensive errors in the 0- to 40-m zone than when a match was won (effect size = 0.99 [0.04–1.94]). Error chains were a predictor of conceding a try (P = .0001, r2 = .22), with the odds ratio increasing to 2.33 when there were 7 errors per chain. High lower-body strength was associated with fewer defensive errors for backs (Bayes factor = 3.67) and forwards (Bayes factor = 19.31); relative bench press was also important for backs (Bayes factor = 3.21). Conclusions: Fewer defensive errors occur in the 0- to 40-m zone during winning matches; lower-body strength is strongly associated with fewer defensive errors in rugby league players.


Author(s):  
Ian Bonder ◽  
Andrew Shim ◽  
Robert G. Lockie ◽  
Tara Ruppert

Based on current law enforcement officer (LEO) duties, musculoskeletal injury risk is elevated due to the unpredictable nature of physically demanding tasks. The purpose of this 4-week study was to determine the effectiveness of a 15-min post-shift standardized occupational specific training program. The standardized program was designed to improve lower-body strength and speed to aid physically demanding task performance. Seven male LEOs completed the program after their 12-h shift. Subjects were required to use the department fitness center to perform the 15-min standardized program consisting of a dynamic warm-up, 4 sets of 3 repetitions on hex-bar deadlift and four 20-m sprints. Two minutes of rest was required between each set of 3 repetitions on hex-bar deadlift and 1 min of rest between each 20-m sprint. A dependent T-test was used between pre-test and post-test scores for hex-bar deadlift (HBD) and sprint. Data revealed significant improvements in relative lower-body strength with HBD (p ≤ 0.001). However, insignificant results were demonstrated with the 20-m sprint (p ≤ 0.262). In conclusion, a 15-min post-shift workout can improve lower-body strength as measured by the hex-bar deadlift. However, data indicated running speed may require a different training approach to improve the 20-m sprint.


2021 ◽  
Vol 51 (5) ◽  
pp. 991-1010
Author(s):  
Henrik Petré ◽  
Erik Hemmingsson ◽  
Hans Rosdahl ◽  
Niklas Psilander

Abstract Background The effect of concurrent training on the development of maximal strength is unclear, especially in individuals with different training statuses. Objective The aim of this systematic review and meta-analysis study was to compare the effect of concurrent resistance and endurance training with that of resistance training only on the development of maximal dynamic strength in untrained, moderately trained, and trained individuals. Methods On the basis of the predetermined criteria, 27 studies that compared effects between concurrent and resistance training only on lower-body 1-repetition maximum (1RM) strength were included. The effect size (ES), calculated as the standardised difference in mean, was extracted from each study, pooled, and analysed with a random-effects model. Results The 1RM for leg press and squat exercises was negatively affected by concurrent training in trained individuals (ES =  – 0.35, p < 0.01), but not in moderately trained ( – 0.20, p = 0.08) or untrained individuals (ES = 0.03, p = 0.87) as compared to resistance training only. A subgroup analysis revealed that the negative effect observed in trained individuals occurred only when resistance and endurance training were conducted within the same training session (ES same session =  – 0.66, p < 0.01 vs. ES different sessions =  – 0.10, p = 0.55). Conclusion This study demonstrated the novel and quantifiable effects of training status on lower-body strength development and shows that the addition of endurance training to a resistance training programme may have a negative impact on lower-body strength development in trained, but not in moderately trained or untrained individuals. This impairment seems to be more pronounced when training is performed within the same session than in different sessions. Trained individuals should therefore consider separating endurance from resistance training during periods where the development of dynamic maximal strength is prioritised.


Sign in / Sign up

Export Citation Format

Share Document