Effects of gate length on GaN HEMT performance at room temperature

2022 ◽  
Vol 161 ◽  
pp. 110418
Author(s):  
Salah Saadaoui ◽  
Olfa Fathallah ◽  
Hassen Maaref
Author(s):  
Jiayan Chu ◽  
Quan Wang ◽  
Lijuan Jiang ◽  
Chun Feng ◽  
Wei Li ◽  
...  
Keyword(s):  

2006 ◽  
Vol 527-529 ◽  
pp. 1261-1264 ◽  
Author(s):  
Sei Hyung Ryu ◽  
Sumi Krishnaswami ◽  
Brett A. Hull ◽  
Bradley Heath ◽  
Mrinal K. Das ◽  
...  

8 mΩ-cm2, 1.8 kV power DMOSFETs in 4H-SiC are presented in this paper. A 0.5 μm long MOS gate length was used to minimize the MOS channel resistance. The DMOSFETs were able to block 1.8 kV with the gate shorted to the source. At room temperature, a specific onresistance of 8 mΩ-cm2 was measured with a gate bias of 15 V. At 150 oC, the specific onresistance increased to 9.6 mΩ-cm2. The increase in drift layer resistance due to a decrease in bulk electron mobility was partly cancelled out by the negative shift in MOS threshold voltage at elevated temperatures. The device demonstrated extremely fast, low loss switching characteristics. A significant improvement in converter efficiency was observed when the 4H-SiC DMOSFET was used instead of an 800 V silicon superjunction MOSFET in a simple boost converter configuration.


2021 ◽  
Author(s):  
Peng Cui ◽  
Yuping Zeng

Abstract Due to the low cost and the scaling capability of Si substrate, InAlN/GaN high-electron-mobility transistors (HEMTs) on silicon substrate have attracted more and more attentions. In this paper, a high-performance 50-nm-gate-length InAlN/GaN HEMT on Si with a high on/off current (Ion/Ioff) ratio of 7.28 × 106, an average subthreshold swing (SS) of 72 mV/dec, a low drain-induced barrier lowing (DIBL) of 88 mV, an off-state three-terminal breakdown voltage (BVds) of 36 V, a current/power gain cutoff frequency (fT/fmax) of 140/215 GHz, and a Johnson’s figure-of-merit (JFOM) of 5.04 THz∙V is simultaneously demonstrated. The device extrinsic and intrinsic parameters are extracted using equivalent circuit model, which is verified by the good agreement between simulated and measured S-parameter values. Then the scaling behavior of InAlN/GaN HEMTs on Si is predicted using the extracted extrinsic and intrinsic parameters of devices with different gate lengths (Lg). It presents that a fT/fmax of 230/327 GHz can be achieved when Lg­ scales down to 20 nm with the technology developed in the study, and an improved fT/fmax of 320/535 GHz can be achieved on a 20-nm-gate-length InAlN/GaN HEMT with regrown ohmic contact technology and 30% decreased parasitic capacitance. This study confirms the feasibility of further improvement of InAlN/GaN HEMTs on Si for RF applications.


Author(s):  
T. Liebchen ◽  
E. Dischke ◽  
A. Ramer ◽  
F. Muller ◽  
L. Schellhase ◽  
...  
Keyword(s):  

2013 ◽  
Vol 347-350 ◽  
pp. 1790-1792
Author(s):  
Xiao Wei Zhang ◽  
Ke Jin Jia ◽  
Yuan Gang Wang ◽  
Zhi Hong Feng ◽  
Zheng Ping Zhao

The GaN HEMT is widely used in high-frequency aspects, use the T-gate to reduce gate resistance is one of the most effective methods to improve the the device maximum oscillation frequency (fmax). But fmax is very sensitive to T-gate size, improper selection may reduce fmax, Therefore, in order to reduce the cost of production, it is necessary to select appropriate simulation T-gate size. We have worked out AlGaN/GaN HEMT with gate length of 0.17μm and fmax values 110GHz. Accuracy of the simulation model is verified by experiment. Then detailed simulates the impact of the T-gate size and we obtain ptimized T-gate size range.


2009 ◽  
Vol 1202 ◽  
Author(s):  
Donat J. As ◽  
Elena Tschumak ◽  
Florentina Niebelschüetz ◽  
W. Jatal ◽  
Joerg Pezoldt ◽  
...  

AbstractNon-polar cubic AlGaN/GaN HFETs were grown by plasma assisted MBE on 3C-SiC substrates. Both normally-on and normally-off HFETs were fabricated using contact lithography. Our devices have a gate length of 2 μm, a gate width of 25 μm, and source-to-drain spacing of 8 μm. For the source and drain contacts the Al0.36Ga0.64N top layer was removed by reactive ion etching (RIE) with SiCl4 and Ti/Al/Ni/Au ohmic contacts were thermally evaporated. The gate metal was Pd/Ni/Au. At room temperature the DC-characteristics clearly demonstrate enhancement and depletion mode operation with threshold voltages of +0.7 V and −8.0 V, respectively. A transconductance of about 5 mS/mm was measured at a drain source voltage of 10 V for our cubic AlGaN/GaN HFETs, which is comparable to that observed in non-polar a-plane devices. From capacity voltage measurements a 2D carrier concentration of about 7×1012 cm-2 is estimated. The influence of source and drain contact resistance, leakage current through the gate contact and parallel conductivity in the underlaying GaN buffer are discussed.


Author(s):  
Fabian Thome ◽  
Erdin Ture ◽  
Peter Bruckner ◽  
Rudiger Quay ◽  
Oliver Ambacher
Keyword(s):  
Gan Hemt ◽  

Sign in / Sign up

Export Citation Format

Share Document