Overexpression of monodehydroascorbate reductase from a mangrove plant (AeMDHAR) confers salt tolerance on rice

2012 ◽  
Vol 169 (3) ◽  
pp. 311-318 ◽  
Author(s):  
Shahanaz Sultana ◽  
Choy-Yuen Khew ◽  
Md. Mahbub Morshed ◽  
Parameswari Namasivayam ◽  
Suhaimi Napis ◽  
...  
2019 ◽  
Vol 21 (1) ◽  
pp. 118 ◽  
Author(s):  
Yi-Ling Liu ◽  
Zhi-Jun Shen ◽  
Martin Simon ◽  
Huan Li ◽  
Dong-Na Ma ◽  
...  

As a dominant mangrove species, Kandelia obovata is distributed in an intertidal marsh with an active H2S release. Whether H2S participates in the salt tolerance of mangrove plants is still ambiguous, although increasing evidence has demonstrated that H2S functions in plant responses to multiple abiotic stresses. In this study, NaHS was used as an H2S donor to investigate the regulatory mechanism of H2S on the salt tolerance of K. obovata seedlings by using a combined physiological and proteomic analysis. The results showed that the reduction in photosynthesis (Pn) caused by 400 mM of NaCl was recovered by the addition of NaHS (200 μM). Furthermore, the application of H2S enhanced the quantum efficiency of photosystem II (PSII) and the membrane lipid stability, implying that H2S is beneficial to the survival of K. obovata seedlings under high salinity. We further identified 37 differentially expressed proteins by proteomic approaches under salinity and NaHS treatments. Among them, the proteins that are related to photosynthesis, primary metabolism, stress response and hormone biosynthesis were primarily enriched. The physiological and proteomic results highlighted that exogenous H2S up-regulated photosynthesis and energy metabolism to help K. obovata to cope with high salinity. Specifically, H2S increased photosynthetic electron transfer, chlorophyll biosynthesis and carbon fixation in K. obovata leaves under salt stress. Furthermore, the abundances of other proteins related to the metabolic pathway, such as antioxidation (ascorbic acid peroxidase (APX), copper/zinc superoxide dismutase (CSD2), and pancreatic and duodenal homeobox 1 (PDX1)), protein synthesis (heat-shock protein (HSP), chaperonin family protein (Cpn) 20), nitrogen metabolism (glutamine synthetase 1 and 2 (GS2), GS1:1), glycolysis (phosphoglycerate kinase (PGK) and triosephosphate isomerase (TPI)), and the ascorbate–glutathione (AsA–GSH) cycle were increased by H2S under high salinity. These findings provide new insights into the roles of H2S in the adaptations of the K. obovata mangrove plant to high salinity environments.


2021 ◽  
Vol 23 (1) ◽  
pp. 138
Author(s):  
Longjie Ni ◽  
Zhiquan Wang ◽  
Xiangdong Liu ◽  
Shuting Wu ◽  
Jianfeng Hua ◽  
...  

Hibiscus hamabo Sieb. et Zucc is an important semi-mangrove plant with great morphological features and strong salt resistance. In this study, by combining single molecule real time and next-generation sequencing technologies, we explored the transcriptomic changes in the roots of salt stressed H. hamabo. A total of 94,562 unigenes were obtained by clustering the same isoforms using the PacBio RSII platform, and 2269 differentially expressed genes were obtained under salt stress using the Illumina platform. There were 519 differentially expressed genes co-expressed at each treatment time point under salt stress, and these genes were found to be enriched in ion signal transduction and plant hormone signal transduction. We used Arabidopsis thaliana (L.) Heynh. transformation to confirm the function of the HhWRKY79 gene and discovered that overexpression enhanced salt tolerance. The full-length transcripts generated in this study provide a full characterization of the transcriptome of H. hamabo and may be useful in mining new salt stress-related genes specific to this species, while facilitating the understanding of the salt tolerance mechanisms.


Ecotoxicology ◽  
2020 ◽  
Vol 29 (6) ◽  
pp. 676-683
Author(s):  
Hao Cheng ◽  
Anifiok Inyang ◽  
Chang-Da Li ◽  
Jiao Fei ◽  
Yan-Wu Zhou ◽  
...  

BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Yuping Xiong ◽  
Haifeng Yan ◽  
Hanzhi Liang ◽  
Yueya Zhang ◽  
Beiyi Guo ◽  
...  

Abstract Background Clerodendrum inerme (L.) Gaertn, a halophyte, usually grows on coastal beaches as an important mangrove plant. The salt-tolerant mechanisms and related genes of this species that respond to short-term salinity stress are unknown for us. The de novo transcriptome of C. inerme roots was analyzed using next-generation sequencing technology to identify genes involved in salt tolerance and to better understand the response mechanisms of C. inerme to salt stress. Results Illumina RNA-sequencing was performed on root samples treated with 400 mM NaCl for 0 h, 6 h, 24 h, and 72 h to investigate changes in C. inerme in response to salt stress. The de novo assembly identified 98,968 unigenes. Among these unigenes, 46,085 unigenes were annotated in the NCBI non-redundant protein sequences (NR) database, 34,756 sequences in the Swiss-Prot database and 43,113 unigenes in the evolutionary genealogy of genes: Non-supervised Orthologous Groups (eggNOG) database. 52 Gene Ontology (GO) terms and 31 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were matched to those unigenes. Most differentially expressed genes (DEGs) related to the GO terms “single-organism process”, “membrane” and “catalytic activity” were significantly enriched while numerous DEGs related to the plant hormone signal transduction pathway were also significantly enriched. The detection of relative expression levels of 9 candidate DEGs by qRT-PCR were basically consistent with fold changes in RNA sequencing analysis, demonstrating that transcriptome data can accurately reflect the response of C. inerme roots to salt stress. Conclusions This work revealed that the response of C. inerme roots to saline condition included significant alteration in response of the genes related to plant hormone signaling. Besides, our findings provide numerous salt-tolerant genes for further research to improve the salt tolerance of functional plants and will enhance research on salt-tolerant mechanisms of halophytes.


2020 ◽  
pp. 18-27
Author(s):  
Lins Simon ◽  
Yusuf Akkara

Salt tolerance potential of the three upland farmer varieties, koduvelliyan, mullankayama and marathondi was evaluated by comparing with the released salt-tolerant pokkali variety, vytilla-2. The salt tolerance exhibited by the upland varieties was identical with the salt tolerant variety. The superoxide (O2-) content in the upland varieties was lower; however, the hydrogen peroxide (H2O2) content increased with the salt concentration. The lesser malondialdehyde (MDA) content in the koduvelliyan variety was equivalent to the vytilla-2 and slight increase was observed in mullankayama and marathondi. The ascorbate (AsA) content in the upland varieties was comparable to vytilla-2 and upon exposure to increased concentration of NaCl, the AsA level reduced in all the treatments. Reduced glutathione (GSH) content was uniform in all the varieties up to a concentration of 100mM NaCl, however, in 125-150mM NaCl, mullankayama showed a pronounced increase in GSH content. Under salt stress, due to the formation of O2-, the oxidation of GSH was higher, maintaining a stable GSH/GSSG ratio. Superoxide dismutase (SOD) and catalase (CAT) activity of the upland varieties was higher than vytilla-2 up to 100mM NaCl, however, in 125-150mM NaCl the SOD activity increased slightly and the CAT activity decreased. Ascorbate peroxidase (APX) activity increased in upland varieties up to 125mM NaCl, and in 150mM NaCl, maintained a steady level in all the varieties. Glutathione reductase (GR) activity increased proportionate with NaCl concentration; with highest activity in all the upland varieties. Monodehydroascorbate reductase (MDHAR) activity was uniform in all the varieties up to 100mM NaCl, however, in 125 and 150mM NaCl, vytilla-2 showed higher MDHAR activity. Dehydroascorbate reductase (DHAR) activity was lesser in upland varieties under salt stress compared to vytilla-2. The GSH/GSSG ratio decreased in marathondi and koduvelliyan varieties with the increase in NaCl concentration, however, in mullankayama and vytilla-2, the GSH/GSSG ratio was higher. The membrane stability index of all the varieties was uniform in all the concentrations of NaCl used, except marathondi. The Na+ content in all the varieties increased in relation to NaCl concentration and the K+ efflux was higher suggesting a higher Na+/K+ ratio, with increased NaCl concentration.


2020 ◽  
Vol 18 (1) ◽  
pp. 1230-1241
Author(s):  
Jakub Pastuszak ◽  
Przemysław Kopeć ◽  
Agnieszka Płażek ◽  
Krzysztof Gondek ◽  
Anna Szczerba ◽  
...  

AbstractDurum wheat is commonly used in various food industry industries and cultivated worldwide. A serious problem with the species cultivation is its capability to accumulate cadmium (Cd) in the grains. The aim of this study is to investigate whether antioxidant activity may be used as a marker of Cd tolerance in durum wheat. The experiment involved three durum wheat genotypes/lines differing in salt tolerance. The plant response to Cd was appraised based on the activity of ascorbate–glutathione (AsA–GSH) cycle enzymes, ascorbate-to-dehydroascorbate ratio, reduced-to-oxidized glutathione ratio (GSH:GSSG), as well as Cd content in the seeds. The highest activity of dehydroascorbate reductase, monodehydroascorbate reductase, and glutathione reductase was noted in control plants of salt-sensitive cultivar “Tamaroi.” In the presence of Cd, activity of these enzymes was considerably reduced. “Tamaroi” plants demonstrated also the highest Cd content in the grain. In conclusion, we identified the cultivar “Tamaroi” as most susceptible to cadmium, and the level of durum wheat sensitivity to the element can be evaluated based on a significant decrease in the activity of AsA–GSH cycle enzymes and GSH:GSSG ratio.


Sign in / Sign up

Export Citation Format

Share Document