metabolic protein
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 16)

H-INDEX

8
(FIVE YEARS 1)

Biomolecules ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1435
Author(s):  
Anna B. Petroff ◽  
Rebecca L. Weir ◽  
Charles R. Yates ◽  
Joseph D. Ng ◽  
Jerome Baudry

Stearoyl-CoA desaturase-1 (SCD1 or delta-9 desaturase, D9D) is a key metabolic protein that modulates cellular inflammation and stress, but overactivity of SCD1 is associated with diseases, including cancer and metabolic syndrome. This transmembrane endoplasmic reticulum protein converts saturated fatty acids into monounsaturated fatty acids, primarily stearoyl-CoA into oleoyl-CoA, which are critical products for energy metabolism and membrane composition. The present computational molecular dynamics study characterizes the molecular dynamics of SCD1 with substrate, product, and as an apoprotein. The modeling of SCD1:fatty acid interactions suggests that: (1) SCD1:CoA moiety interactions open the substrate-binding tunnel, (2) SCD1 stabilizes a substrate conformation favorable for desaturation, and (3) SCD1:product interactions result in an opening of the tunnel, possibly allowing product exit into the surrounding membrane. Together, these results describe a highly dynamic series of SCD1 conformations resulting from the enzyme:cofactor:substrate interplay that inform drug-discovery efforts.


2021 ◽  
Vol 22 (15) ◽  
pp. 8307
Author(s):  
Bartosz Fotschki ◽  
Aurora Garcia Tejedor ◽  
Juan Antonio Nieto Fuentes ◽  
Jose Moisés Laparra Llopis

This study evaluated the immunonutritional effects caused by protease inhibitors from Avena sativa and Triticum durum to human macrophage-like cells. Macrophages were exposed (3 h) to extracts obtained from flours, and mitochondrial-associated oxygen consumption rates and inflammatory, metabolic, and proteome adaptations were quantified. Mass spectrometry ‘m/z’ signals of the extracts obtained from T. durum and A. sativa revealed molecular weights of 18–35 kDa and 16–22 kDa, respectively, for the compounds present at highest concentrations. Extracts from T. durum exhibited lower susceptibility to degradation by gastrointestinal enzymes than those from A. sativa: 9.5% vs. 20.2%. Despite their different botanical origin, both extracts increased TLR4 expression. Metabolic protein levels were indicative of a decreased glycolytic to lactate flux in cell cultures upon stimulation with A. sativa extracts, which improved mitochondrial respiration in relation to those from T. durum. Principal components analysis confirmed relative similarities between immune–metabolic events triggered by immunonutritional ingredients in T. durum and A. sativa. Collectively, immunonutritional effects help to interpret the differences between both crops, worsening or improving, macrophage immune reactivity (tolerogenicity), and better control of inflammatory processes.


2021 ◽  
Vol 22 (15) ◽  
pp. 8267
Author(s):  
Yang Yang ◽  
Xinyun Xu ◽  
Haoying Wu ◽  
Jun Yang ◽  
Jiangang Chen ◽  
...  

17,18-Epoxyeicosatetraenoic acid (17,18-EEQ) and 19,20-epoxydocosapentaenoic acid (19,20-EDP) are bioactive epoxides produced from n-3 polyunsaturated fatty acid eicosapentaenoic acid and docosahexaenoic acid, respectively. However, these epoxides are quickly metabolized into less active diols by soluble epoxide hydrolase (sEH). We have previously demonstrated that an sEH inhibitor, t-TUCB, decreased serum triglycerides (TG) and increased lipid metabolic protein expression in the brown adipose tissue (BAT) of diet-induced obese mice. This study investigates the preventive effects of t-TUCB (T) alone or combined with 19,20-EDP (T + EDP) or 17,18-EEQ (T + EEQ) on BAT activation in the development of diet-induced obesity and metabolic disorders via osmotic minipump delivery in mice. Both T + EDP and T + EEQ groups showed significant improvement in fasting glucose, serum triglycerides, and higher core body temperature, whereas heat production was only significantly increased in the T + EEQ group. Moreover, both the T + EDP and T + EEQ groups showed less lipid accumulation in the BAT. Although UCP1 expression was not changed, PGC1α expression was increased in all three treated groups. In contrast, the expression of CPT1A and CPT1B, which are responsible for the rate-limiting step for fatty acid oxidation, was only increased in the T + EDP and T + EEQ groups. Interestingly, as a fatty acid transporter, CD36 expression was only increased in the T + EEQ group. Furthermore, both the T + EDP and T + EEQ groups showed decreased inflammatory NFκB signaling in the BAT. Our results suggest that 17,18-EEQ or 19,20-EDP combined with t-TUCB may prevent high-fat diet-induced metabolic disorders, in part through increased thermogenesis, upregulating lipid metabolic protein expression, and decreasing inflammation in the BAT.


Author(s):  
Suman Sahoo ◽  
Md. Lutfur Rahman ◽  
Sagarika Mitra ◽  
Rajiniraja M.

Chemical pollutant such as insecticide, pesticide and drugs are mainly used for agriculture, industry and economic development, which are well known for environment pollutant due to its toxicity and persistence in the nature. It can accumulate into the environment and continuously contaminate the food chain which causes threat to the health of consumer including human. Based on all these studies our investigation deals with the effects of two insecticides viz. methyl parathion and diazinon to non target organism like Drosophila melanogaster. In this study we have performed molecular modeling, docking and protein function analysis of different metabolic and physiological enzyme of Drosophila melanogaster such as acetylcholinesterase (AchE), Glutathione S-transferase D1(GST) and Protein kinase C (PKC) with these insecticides of six combinations (AchE + Diazinon, AchE + methyl parathion, GST+Diazinon, GST+Methyl parathion, PKC+Diazinon, PKC+Methyl parathion). Molecular docking results showing best binding affinity for GST+ Methyl parathion with binding energy of -4.79 kcal/mol. Overall, methyl parathion produces efficient binding toward all target protein when compare to diazinon. However, more detailed analysis need to be carried out to have an in-depth understanding of in vivo significance of these bimolecular interactions.


2021 ◽  
Vol 11 (12) ◽  
pp. 5755
Author(s):  
Mungunshur Byambajav ◽  
Cristina Arroyo-del Arroyo ◽  
Amalia Enríquez-de-Salamanca ◽  
Itziar Fernández ◽  
Eilidh Martin ◽  
...  

The concentrations of insulin, leptin, active ghrelin, C-peptide and gastric inhibitory polypeptide (GIP) and their inter-day variations were examined in normal human tears. In addition, correlations between the concentrations of these metabolic proteins and ocular surface parameters were determined. Subjects with healthy ocular surfaces attended three visits, with 7-day intervals. Tear evaporation rate (TER) and non-invasive tear break-up time (NITBUT) were assessed, and a total of 2 µL tears were collected from all subjects. Tear fluid concentrations of insulin, leptin, active ghrelin, C-peptide and GIP were measured by multiplex bead analysis. Insulin was the most highly expressed metabolic protein, followed by leptin, C-peptide, active ghrelin and GIP. Of these, only active ghrelin had a significant inter-day variation (p < 0.05). There was no inter-day variation in the mean concentrations of the other metabolic proteins. Leptin had a strong intra-class reproducibility. No correlation was detected between tear metabolic protein concentrations and ocular surface parameters. This pilot study shows, for the first time, that active ghrelin and GIP are detectable in healthy tears. The strong intra-class reproducibility for leptin shows that it could be used as a potential tear fluid biomarker and, possibly, in determining the effects of metabolic disorders on the ocular surface.


2021 ◽  
Author(s):  
Martín Arenas ◽  
Carlos Alfonso Álvarez‐González ◽  
Alvaro Barreto ◽  
Adolfo Sánchez‐Zamora ◽  
Jaime Suárez‐Bautista ◽  
...  

2021 ◽  
Vol 35 (S1) ◽  
Author(s):  
Alexandra Soto‐Piña ◽  
Yizel Becerril‐Alarcón ◽  
Alejandra Benítez‐Arciniega ◽  
David Aguirre‐Quezada ◽  
Roberto Camacho‐Beiza

Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2596
Author(s):  
Antonella Di Francesco ◽  
Vincenzo Cunsolo ◽  
Rosaria Saletti ◽  
Birte Svensson ◽  
Vera Muccilli ◽  
...  

Wheat represents one of the most important cereals for mankind. However, since wheat proteins are also the causative agent of several adverse reactions, during the last decades, consumers have shown an increasing interest in the old wheat genotypes, which are generally perceived as more “natural” and healthier than the modern ones. Comparison of nutritional value for modern and old wheat genotypes is still controversial, and to evaluate the real impact of these foods on human health comparative experiments involving old and modern genotypes are desirable. The nutritional quality of grain is correlated with its proteomic composition that depends on the interplay between the genetic characteristics of the plant and external factors related to the environment. We report here the label-free shotgun quantitative comparison of the metabolic protein fractions of two old Sicilian landraces (Russello and Timilia) and the modern variety Simeto, from the 2010–2011 and 2011–2012 growing seasons. The overall results show that Timilia presents the major differences with respect to the other two genotypes investigated. These differences may be related to different defense mechanisms and some other peculiar properties of these genotypes. On the other hand, our results confirm previous results leading to the conclusion that with respect to a nutritional value evaluation, there is a substantial equivalence between old and modern wheat genotypes. Data are available via ProteomeXchange with identifier <PXD024204>.


2021 ◽  
Vol 12 ◽  
Author(s):  
Irina Erchova ◽  
Shanshan Sun ◽  
Marcela Votruba

Autosomal Dominant Optic Atrophy (ADOA) is an ophthalmological condition associated primarily with mutations in the OPA1 gene. It has variable onset, sometimes juvenile, but in other patients, the disease does not manifest until adult middle age despite the presence of a pathological mutation. Thus, individuals carrying mutations are considered healthy before the onset of clinical symptoms. Our research, nonetheless, indicates that on the cellular level pathology is evident from birth and mutant cells are different from controls. We argue that the adaptation and early recruitment of cytoprotective responses allows normal development and functioning but leads to an exhaustion of cellular reserves, leading to premature cellular aging, especially in neurons and skeletal muscle cells. The appearance of clinical symptoms, thus, indicates the overwhelming of natural cellular defenses and break-down of native protective mechanisms.


2020 ◽  
Vol 11 (12) ◽  
Author(s):  
Ruixue Zhang ◽  
Mengqin Shen ◽  
Chunhua Wu ◽  
Yumei Chen ◽  
Jiani Lu ◽  
...  

AbstractPyruvate kinase M2 (PKM2) is not only a key rate-limiting enzyme that guides glycolysis, but also acts as a non-metabolic protein in regulating gene transcription. In recent years, a series of studies have confirmed that post-translational modification has become an important mechanism for regulating the function of PKM2, which in turn affects tumorigenesis. In this study, we found that K62 residues were deacetylated, which is related to the prognosis of HCC. Further studies indicate that HDAC8 binds and deacetylates the K62 residue of PKM2. Mechanistically, K62 deacetylation facilitate PKM2 transport into the nucleus and bind β-catenin, thereby promoting CCND1 gene transcription and cell cycle progression. In addition, the deacetylation of K62 affects the enzyme activity of PKM2 and the flux of glucose metabolism. Therefore, these results suggest that HDAC8 / PKM2 signaling may become a new target for the treatment of HCC.


Sign in / Sign up

Export Citation Format

Share Document