Probing the heat sources during thermal runaway process by thermal analysis of different battery chemistries

2018 ◽  
Vol 378 ◽  
pp. 527-536 ◽  
Author(s):  
Siqi Zheng ◽  
Li Wang ◽  
Xuning Feng ◽  
Xiangming He
2019 ◽  
Vol 246 ◽  
pp. 53-64 ◽  
Author(s):  
Xuning Feng ◽  
Siqi Zheng ◽  
Dongsheng Ren ◽  
Xiangming He ◽  
Li Wang ◽  
...  

2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Jing He ◽  
Liping Liu ◽  
Anthony M. Jacobi

Thermal analysis with comprehensive treatment of conjugate heat transfer is performed in this study for discrete flush-mounted heat sources in a horizontal channel cooled by air. The numerical model accounts for mixed convection, radiative exchange and two-dimensional conduction in the substrate. The model is first used to simulate available experimental work to demonstrate its accuracy and practical utility. A parametric study is then undertaken to assess the effects of Reynolds number, surface emissivity of walls and heat sources, as well as thickness and thermal conductivity of substrate, on flow field and heat transfer characteristics. It is shown that due to radiative heat transfer, the wall temperatures are brought closer, and the trend of temperature variation along the top wall is significantly altered. Such effects are more pronounced for higher surface emissivity and/or lower Reynolds numbers. The influence of substrate conductivity and thickness is related in that a large value of either substrate conductivity or thickness facilitates redistribution of heat and tends to yield a uniform temperature field in the substrate. For highly conductive or thick substrate, the “hot spot” cools down and may occur in upstream sources. Radiation loss to the ambient increases with substrate conductivity and thickness due to the elevated temperature near the openings, yet the total heat transfer over the bottom surface by convection and radiation remains essentially unaltered.


Author(s):  
James B. Robinson ◽  
Donal P. Finegan ◽  
Thomas M. M. Heenan ◽  
Katherine Smith ◽  
Emma Kendrick ◽  
...  

Thermal runaway is a phenomenon that occurs due to self-sustaining reactions within batteries at elevated temperatures resulting in catastrophic failure. Here, the thermal runaway process is studied for a Li-ion and Na-ion pouch cells of similar energy density (10.5 Wh, 12 Wh, respectively) using accelerating rate calorimetry (ARC). Both cells were constructed with a z-fold configuration, with a standard shutdown separator in the Li-ion and a low-cost polypropylene (PP) separator in the Na-ion. Even with the shutdown separator, it is shown that the self-heating rate and rate of thermal runaway in Na-ion cells is significantly slower than that observed in Li-ion systems. The thermal runaway event initiates at a higher temperature in Na-ion cells. The effect of thermal runaway on the architecture of the cells is examined using X-ray microcomputed tomography, and scanning electron microscopy (SEM) is used to examine the failed electrodes of both cells. Finally, from examination of the respective electrodes, likely due to the carbonate solvent containing electrolyte, it is suggested that thermal runaway in Na-ion batteries (NIBs) occurs via a similar mechanism to that reported for Li-ion cells.


2020 ◽  
Author(s):  
Pedro Cabral ◽  
Amel Adouni

Many industry applications required the use of the induction motors. In such envirenement the electrical machines are facing of many stressed operating conditions. One of the critical creteria which decide the choice of the induction motor is the thermal behaviour under different mode operation. In this paper a study of the thermal behavior of an induction motor is presented. In order to predict the temperature in the different machine components, a model based on the lumped parameter thermal network   has been developed. The geometry of the machine and the thermal properties of its various components are used to express the developed model. The joule and the iron losses are considering as the inputs. The proposed model is implemented and tested using MATLAB software. It is a simple model which could predict rapidly the different temperatures. Keywords: Induction motor, Thermal analysis, Lumped parameters thermal network, Modeling, Heat sources


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3239
Author(s):  
Phuong Thi Luu ◽  
Ji-Young Lee ◽  
Ji-Heon Lee ◽  
Jung-Woo Park

This paper presents the electromagnetic and thermal characteristics of a permanent magnet synchronous motor (PMSM) in a joint actuator which is used for articulated robot application. In an attempt to design a compact PMSM for the articulated robot, robot link should be taken into consideration during the motor design process as it can reduce the temperature distribution on motor, thus reducing the volume of the motor. A lumped-parameter thermal model of PMSM with and without a link is proposed considering the core loss, copper loss, and mechanical loss as heat sources. The electromagnetic and thermal analysis results are well confirmed by the experiment in a 400 W 20-pole/24-slot PMSM. The experiment results show that the robot link helps to reduce the motor end-winding temperature by about 40%, and this leads to an increase in power density of the motor.


Author(s):  
A. Altes ◽  
R. Heiderhoff ◽  
L.J. Balk ◽  
I. Joachimsthaler ◽  
G. Zimmermann

Abstract A resistive probe based Scanning Thermal Microscope (SThM) was implemented in an analysis chamber of a Scanning Electron Microscope (SEM). By means of this hybrid-system thermal device, specific characteristics are detectable. Variable punctual heat sources can be simulated and the influence of ambient parameters can be investigated.


Sign in / Sign up

Export Citation Format

Share Document