scholarly journals Lithium substituted poly(amic acid) as a water-soluble anode binder for high-temperature pre-lithiation

2022 ◽  
Vol 521 ◽  
pp. 230889
Author(s):  
Tianyu Zhu ◽  
Thanh-Nhan Tran ◽  
Chen Fang ◽  
Dongye Liu ◽  
Subramanya P. Herle ◽  
...  
Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1298
Author(s):  
Jong Won Kim ◽  
Seon Ju Lee ◽  
Moon Young Choi ◽  
Jin-Hae Chang

4,4′-(4,4′-isopropylidenediphenoxy)bis(phthalic anhydride) (BPADA) as a dianhydride and bis(3-aminophenyl) sulfone (APS) and bis(3-amino-4-hydroxyphenyl) sulfone (APS-OH) as diamines were used to synthesize two types of poly(amic acid) (PAA). Varying amounts (0–5.0 wt%) of water-soluble poly(vinyl alcohol) (PVA) were mixed with PAA, and the resulting blend was heat-treated at different stages to obtain the colorless and transparent polyimide (CPI) blend films. The synthesized blended film completely removed water-soluble PVA in water. The possibility as a porous membrane according to the pore size varied according to the amount of PVA was investigated. The dispersibility and compatibility of CPI containing APS-OH monomer were higher than those of the APS monomer. This could be attributed to the hydrogen-bonding interactions between the CPI main chains and PVA. Scanning electron microscopy was conducted to characterize the material. The results revealed that the pore size of the CPI blend film increased as the PVA concentration increased. It was confirmed that uniform pores of μm-size were observed in CPI. The thermal stabilities, morphologies, optical properties, and solubilities of two CPIs obtained using APS and APS-OH monomers were investigated and their properties were compared with each other.


2021 ◽  
pp. 2101976
Author(s):  
Zhizhan Dai ◽  
Zhiwei Bao ◽  
Song Ding ◽  
Chuanchuan Liu ◽  
Haoyang Sun ◽  
...  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jinliang Liu ◽  
Fengshan Zhou ◽  
Fengyi Deng ◽  
Hongxing Zhao ◽  
Zhongjin Wei ◽  
...  

Abstract Most of bentonite used in modern drilling engineering is physically and chemically modified calcium bentonite. However, with the increase of drilling depth, the bottom hole temperature may reach 180 °C, thus a large amount of calcium bentonite used in the drilling fluid will be unstable. This paper covers three kinds of calcium bentonite with poor rheological properties at high temperature, such as apparent viscosity is greater than 45 mPa·s or less than 10 mPa·s, API filtration loss is greater than 25 mL/30 min, which are diluted type, shear thickening type and low-shear type, these defects will make the rheological properties of drilling fluid worse. The difference is attributed to bentonite mineral composition, such as montmorillonite with good hydration expansion performance. By adding three kinds of heat-resistant water-soluble copolymers Na-HPAN (hydrolyzed polyacrylonitrile sodium), PAS (polycarboxylate salt) and SMP (sulfomethyl phenolic resin), the rheological properties of calcium bentonite drilling fluids can be significantly improved. For example, the addition of 0.1 wt% Na-HPAN and 0.1 wt% PAS increased the apparent viscosity of the XZJ calcium bentonite suspension from 4.5 to 19.5 mPa·s at 180 °C, and the filtration loss also decreased from 20.2 to 17.8 mL.


2014 ◽  
Vol 15 (11) ◽  
pp. 2247-2252
Author(s):  
Jackie Y. Cai ◽  
Jill McDonnell ◽  
Craig L. Francis ◽  
Jeffrey S. Church ◽  
John Tsanaktsidis ◽  
...  

2013 ◽  
Vol 477-478 ◽  
pp. 1354-1358
Author(s):  
Jian Qing Meng ◽  
Xiao Yu Jia ◽  
Wei Qiao Yang ◽  
Xi Hong Li

Effects of different methods of gas package on freshness of harvested fresh Sweet Corn, at room temperature in its shelf life were investigated. The harvested fresh Sweet Corn were packaged under vacuum, air, N2 or CO2, respectively, and then stored 90 days at 30°Cafter the high temperature sterilization. After the sterilization and during storage, the changes of aerobic plate count, water content, soluble sugar content, and TPA were determined. The results showed that compared with others, the package with N2 could inhibit the growth of microorganisms, kept the content of water, soluble sugar and fat. After 90 days, TPA showed that the package in nitrogen could improve the quality of sweet corns.


2017 ◽  
Vol 17 (1) ◽  
pp. 79-82 ◽  
Author(s):  
K. Kaczmarska ◽  
A. Bobrowski ◽  
S. Żymankowska-Kumon ◽  
B. Grabowska

Abstract Emission of gases under high temperature after pouring molten metal into moulds, which contain the organic binder or other additives (solvents or curing agent), may be an important factor influencing both on the quality of the produced castings, and on the state of environment. Therefore, a comprehensive study of the emitted gases would allow to determine restrictions on the use of the moulding sands in foundry technologies, eg. the probability of occurrence of casting defects, and identify the gaseous pollutants emitted to the environment. The aim of the research presented in this paper was to determine the amount of gases that are released at high temperatures from moulding sands bonded by biopolymer binder and the quantitative assessment of the emitted pollutants with particular emphasis on chemical compounds: benzene, toluene, ethylbenzene and xylenes (BTEX). The water-soluble modified potato starch as a sodium carboxymethyl starch with low (CMS-NaL) or high (CMS-NaH) degree of substitution was a binder in the tested moulding sands. A tests of gases emission level were conducted per the procedure developed at the Faculty of Foundry Engineering (AGH University of Science and Technology) involving gas chromatography method (GC). The obtained results of the determination of amount of BTEX compounds generated during the decomposition process of starch binders showed lower emission of aromatic hydrocarbons in comparison with binder based on resin Kaltharz U404 with the acidic curing agent commonly used in the foundries.


1981 ◽  
Vol 21 (06) ◽  
pp. 721-730 ◽  
Author(s):  
D.A. Tyssee ◽  
O.J. Vetter

Abstract Water-soluble polymers are being used increasingly in oil, gas, and geothermal production. Applications include drilling, stimulation, workover and completion, and reservoir flooding fluids. The development of polymers and their application has been mostly empirical. Such a course of development was suitable in the past. However, empirical techniques do not satisfy present and future needs which include (1) the cost/performance relationship and (2) environmental effects associated with expanding polymer application. Therefore, a more thorough understanding of the polymer chemistry is required.The first step in doing this is to develop laboratory methods to characterize these complex materials and their degradation products. The problems are (1) understanding polymer chemistry under field conditions and (2) developing analytical procedures. These problems emerged dramatically during analysis of recent fracture stimulation of some geothermal wells. An involved study of the potential analytical methods was conducted. Polysaccharides were used for the actual field fracture jobs as well as for the analytical procedures. Correlations were made between the total organic content and carbohydrate content of the return waters as a function of residence time under simulated reservoir conditions. Preliminary indications are that more sophisticated information can be obtained by the use of emerging analytical techniques such as high pressure liquid chromatography (HPLC).Advantages gained from use of these methods and others are discussed. Introduction A variety of polymers are used in the petroleum industry for drilling, workover, and completion fluids. Many of these polymers can be used in the geothermal industry for similar applications. However, because the environment of a geothermal reservoir may be drastically different from that of a petroleum reservoir, it is critical that these polymers be investigated under conditions that simulate geothermal environments. In the past, physical property measurements of aqueous solutions of these polymers have been emphasized - particularly fluid rheology both for petroleum and, to a lesser extent, geothermal applications. These physical properties, which are valuable in selecting polymers or polymer blends for use, can be related to the chemical properties of the polymers. Properties such as molecular weight distribution and macrostructure, molecular conformation, side-chain structure, composition of the monomer units comprising the polymer backbone, chemical interactions in the make-up water, chemical and thermal stability, etc., play an important role in determining the ultimate physical properties of the polymer in solutions.Many of these chemical features have been overlooked, and the development of polymers for field applications has followed a strictly empirical course. This empiricism has led to a great deal of confusion when polymers must be selected for field use. A more serious drawback has been the lack of new polymer types - largely because little is known about how the physical properties desired can be related to polymer chemistry. This can be traced for the most part to the lack of chemical methods available in the past to characterize the polymers chemically in sufficient detail. The high-temperature requirements of geothermal applications impose severe limitation on the fracture polymers, particularly their performance and chemical stability under high-temperature conditions. SPEJ P. 721^


2008 ◽  
Vol 6 (3) ◽  
pp. 465-469 ◽  
Author(s):  
Tevhide Özkaya ◽  
Abdulhadi Baykal ◽  
Muhammet Toprak

AbstractWater-soluble Mn3O4 nanocrystals have been prepared through thermal decomposition in a high temperature boiling solvent, 2-pyrrolidone. The final product was characterized with XRD, SEM, TEM, FTIR and Zeta Potential measurements. Average crystallite size was calculated as ∼15 nm using XRD peak broadening. TEM analysis revealed spherical nanoparticles with an average diameter of 14±0.4 nm. FTIR analysis indicated that 2-pyrrolidone coordinates with the Mn3O4 nanocrystals only via O from the carbonyl group, thus confining their growth and protecting their surfaces from interaction with neighboring particles.


Sign in / Sign up

Export Citation Format

Share Document