scholarly journals 2-pyrrolidone - capped Mn3O4 nanocrystals

2008 ◽  
Vol 6 (3) ◽  
pp. 465-469 ◽  
Author(s):  
Tevhide Özkaya ◽  
Abdulhadi Baykal ◽  
Muhammet Toprak

AbstractWater-soluble Mn3O4 nanocrystals have been prepared through thermal decomposition in a high temperature boiling solvent, 2-pyrrolidone. The final product was characterized with XRD, SEM, TEM, FTIR and Zeta Potential measurements. Average crystallite size was calculated as ∼15 nm using XRD peak broadening. TEM analysis revealed spherical nanoparticles with an average diameter of 14±0.4 nm. FTIR analysis indicated that 2-pyrrolidone coordinates with the Mn3O4 nanocrystals only via O from the carbonyl group, thus confining their growth and protecting their surfaces from interaction with neighboring particles.

2019 ◽  
Vol 7 (3) ◽  
pp. 59-66 ◽  
Author(s):  
Krishna Kushwaha ◽  
Manoj Kumar Mishra ◽  
Rajat Srivastava

Objective: The objective of present work was to utilize the potential of nanostructured lipid carriers (NLCs) form improvement in bioavailability of Sertraline as antidepressant drug formulated by emulsification- solvent evaporation technique with some modification. NLC is the blend of solid lipid, liquid lipid and surfactant for encapsulation of poor water soluble actives. Design: A full 32 factorial design was utilized to study the effect of two independent parameters namely solid lipid to liquid lipid concentration and stabilizer concentration on the entrapment efficiency of the prepared NLCs. The sertraline NLC formulation was characterized with respect to particle size, polydispersity index (PDI), zeta-potential, encapsulation efficiency and physical morphology. Result: The NLC formulation had an average diameter of 96.59 nm, PDI of 0.192, zeta-potential of -39.88 mV, and encapsulation efficiency of 97%, respectively. Conclusion: The NLC formulation for sertraline encapsulation has been successfully developed and is suitable for nose to brain delivery system due to their nano-size and sta


2020 ◽  
Vol 42 (3) ◽  
pp. 440-440
Author(s):  
Xin Bin Yang Xin Bin Yang ◽  
Chun Mei Wang Chun Mei Wang ◽  
Yu Huang Yu Huang

Gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) were synthesized by using water-soluble Kaempferol–3′–sulfonate acid sodium (KS) alone as the reducing agent. The UV-vis spectra confirmed the formation of the ks-AuNPs and ks-AgNPs which were stable for up to 3 months without any other stabilizing agents at room temperature. The TEM studies exhibited monodispersed and mainly spherical nanoparticles with the size in the range of 15-30 nm and 20-50 nm for ks-AuNPs and ks-AgNPs, respectively. The XRD revealed crystallinity of nanoparticles. The chemical state of Au and Ag on the surface of nanoparticles was analyzed by XPS. The FTIR analysis indicated that the hydroxyl of KS were responsible for the reduction of Au3+ and Ag+ to ks-AuNPs and ks-AgNPs, respectively. Cytotoxic activity of ks-AuNPs and ks-AgNPs on MCF-7 cells is higher than the KS.


2015 ◽  
Vol 22 (2) ◽  
pp. 376-384 ◽  
Author(s):  
Yuanyuan Tan ◽  
Hongying Yu ◽  
Zhonghua Wu ◽  
Bin Yang ◽  
Yu Gong ◽  
...  

Noncrystalline nickel phosphide (Ni–P) nanoparticles have drawn great attention due to their high potential as catalysts. However, the structure of noncrystalline Ni–P nanoparticles is still unknown, which may shed light on explaining the catalysis mechanism of the Ni–P nanoparticles. In this paper, noncrystalline Ni–P nanoparticles were synthesized. Their morphology, particle size, element contents, local atomic structures, as well as the catalysis in the thermal decomposition of ammonium perchlorate were studied. The results demonstrate that the as-prepared Ni–P nanoparticles are spherical with an average diameter of about 13.5 nm. The Ni and P contents are, respectively, 78.15% and 21.85%. The noncrystalline nature of the as-prepared Ni–P nanoparticles can be attributed to cross-linkage between P-doping f.c.c.-like Ni centers and Ni3P-like P centers. The locally ordered Ni centers and P centers are the nuclei sites, which can explain well the origin of initial nuclei to form the crystalline phases after high-temperature annealing. The starting temperature of high-temperature decomposition of ammonium perchlorate was found having a significant decrease in the presence of the noncrystalline Ni–P nanoparticles. Therefore, the as-prepared noncrystalline Ni–P nanoparticles can be used as a potential catalyst in the thermal decomposition of ammonium perchlorate.


Author(s):  
V. Jhansi Lakshmi ◽  
K. P. Kannan

Objective: The present study was aimed to investigate gold nanoparticles synthesized by fungal isolate Neosartorya udagawae and determination of their stability in biofluids to probe their aptness in drug delivery applications.Methods: In this procedure, gold nanoparticles were prepared by biosynthesis using seven days old culture of Neosartorya udagawae and aqueous chloroauric acid. After the complete reaction, the fungal biomass was subjected to UV-Vis, XRD, FT-IR Spectrum analysis, TEM, Zeta potential, SEM and EDX analysis.Results: Intra/extracellular synthesis of gold nanoparticles was confirmed by a sharp peak at 526 nm in UV spectroscopy. SEM, TEM analysis demonstrates the spherical shape of AuNPs with an average diameter of 50 nm and XRD confirm the crystalline gold nanoparticles. FTIR analysis reveals the presence of the protein shell around the gold nanoparticles. The zeta potential value of AuNPs was-36mV which confirmed the stability of nanoparticles dispersion. Gold nanoparticles have shown high stability in biofluids of Bovine Serum Albumin and Phosphate Buffer Saline at pH-5, pH-7and pH-9 which mimic the human colonic biological environment.Conclusion: The fungal synthesis of AuNPs has been experimentally demonstrated and their stability in BSA, 10% NaCl and PBS at pH-7. This might be a promising option for drug delivery applications in carcinogenic colon disorders in human beings. 


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 241
Author(s):  
Thangavel Ponrasu ◽  
Bei-Hsin Chen ◽  
Tzung-Han Chou ◽  
Jia-Jiuan Wu ◽  
Yu-Shen Cheng

The fast-dissolving drug delivery systems (FDDDSs) are developed as nanofibers using food-grade water-soluble hydrophilic biopolymers that can disintegrate fast in the oral cavity and deliver drugs. Jelly fig polysaccharide (JFP) and pullulan were blended to prepare fast-dissolving nanofiber by electrospinning. The continuous and uniform nanofibers were produced from the solution of 1% (w/w) JFP, 12% (w/w) pullulan, and 1 wt% Triton X-305. The SEM images confirmed that the prepared nanofibers exhibited uniform morphology with an average diameter of 144 ± 19 nm. The inclusion of JFP in pullulan was confirmed by TGA and FTIR studies. XRD analysis revealed that the increased crystallinity of JFP/pullulan nanofiber was observed due to the formation of intermolecular hydrogen bonds. The tensile strength and water vapor permeability of the JFP/pullulan nanofiber membrane were also enhanced considerably compared to pullulan nanofiber. The JFP/pullulan nanofibers loaded with hydrophobic model drugs like ampicillin and dexamethasone were rapidly dissolved in water within 60 s and release the encapsulants dispersive into the surrounding. The antibacterial activity, fast disintegration properties of the JFP/pullulan nanofiber were also confirmed by the zone of inhibition and UV spectrum studies. Hence, JFP/pullulan nanofibers could be a promising carrier to encapsulate hydrophobic drugs for fast-dissolving/disintegrating delivery applications.


2016 ◽  
Vol 118 ◽  
pp. 345-352 ◽  
Author(s):  
Yan Lin ◽  
Yanfen Liao ◽  
Zhaosheng Yu ◽  
Shiwen Fang ◽  
Yousheng Lin ◽  
...  

2015 ◽  
Vol 645-646 ◽  
pp. 394-399
Author(s):  
Wei Gao ◽  
Qi Long Wei ◽  
Ling Ding ◽  
Xiao Yuan Li ◽  
Chao Wang ◽  
...  

A multi-scale method was developed, which utilized intrinsic relationships among zeta potential of particles, rheological properties of suspensions and particle size distribution (PSD), to analyze dispersion behavior of nanoparticles in concentrated suspensions. It was found that PSD of a kind of nanoceria particles by dynamic light scattering (DLS) method in solution A with concentration 5 wt% accorded well with that by direct TEM analysis, which meant the particles had been dispersed well. However, there had a significant difference when the concentration was increased to 20 wt%. When particles concentration increased from 5 wt% to 20 wt%, zeta potential in solution A changed from-150 mV to-100 mV, while zeta potential in solution B changed from-35mV to-45 mV. Variations of zeta potential of particles accorded well with rheological properties of suspensions too, from phenomenological models. When the suspensions composed by solution A and the nanoparticles with concentration about 20 wt% was diluted with its original solution to 5 wt%, the PSD of nanoceria could be measured indirectly, which accorded well with both that of a suspension prepared directly with near concentration and that from TEM images. Then a method to measure PSD of nanoparticles in concentrated suspension was brought forward.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 398
Author(s):  
Chihao Liu ◽  
Jiajian Chen

At present, the research on the high temperature degradation of concrete usually focuses on only the degradation of concrete itself without considering the effect of the plastering layer. It is necessary to take into account the influence of the plastering layer on the high temperature degradation of concrete. With an increase in the water/cement ratio, the explosion of concrete disappeared. Although increasing the water/cement ratio can alleviate the cracking of concrete due to lower pressure, it leads to a decrease in the mechanical properties of concrete after heating. It is proved that besides the water/cement ratio, the apparent phenomena and mechanical properties of concrete at high temperature can be affected by the plastering layer. The plastering layer can relieve the high temperature cracking of concrete, and even inhibit the high temperature explosion of concrete with 0.30 water/cement ratio. By means of an XRD test, scanning electron microscope test and thermogravimetric analysis, it is found that the plastering layer can promote the rehydration of unhydrated cement particles of 0.30 water/cement ratio concrete at high temperature and then promote the mechanical properties of concrete at 400 °C. However, the plastering layer accelerated the thermal decomposition of C-S-H gel of concrete with a water/cement ratio of 0.40 at high temperature, and finally accelerate the decline of mechanical property of concrete. To conclude, the low water/cement ratio and plastering layer can delay the deterioration of concrete at high temperature.


Sign in / Sign up

Export Citation Format

Share Document