LA-ICP-MS U–Pb zircon age constraints on the Paleoproterozoic and Neoarchean history of the Sandmata Complex in Rajasthan within the NW Indian Plate

2011 ◽  
Vol 42 (3) ◽  
pp. 286-305 ◽  
Author(s):  
C.V. Dharma Rao ◽  
M. Santosh ◽  
Ritesh Purohit ◽  
Junpeng Wang ◽  
Xingfu Jiang ◽  
...  
2018 ◽  
pp. 021-080 ◽  
Author(s):  
Sandra M. Barr ◽  
Deanne Van Rooyen ◽  
Chris E. White

Granitoid plutons are a major component of pre-Carboniferous rocks in Cape Breton Island and knowledge of the time and tectonic setting of their emplacement is crucial for understanding the geological history of the island, guiding exploration for granite-related economic mineralization, and making along-orogen correlations. The distribution of these plutons and their petrological characteristics have been used in the past for recognizing both Laurentian and peri-Gondwanan components in Cape Breton Island, and for subdividing the peri-Gondwanan components into Ganderian and Avalonian terranes. However, ages of many plutons were assumed on the basis of field relations and petrological features compared to those of the relatively few reliably dated plutons. Seventeen new U–Pb (zircon) ages from igneous units reported here provide enhanced understanding of the distribution of pluton ages. Arc-related plutons in the Aspy terrane with ages of ca. 490 to 475 Ma likely record the Penobscottian tectonomagmatic event recognized in the Exploits subzone of central Newfoundland and New Brunswick but not previously recognized in Cape Breton Island. Arc-related Devonian plutonic activity in the same terrane is more widespread, continuous, and protracted (445 Ma to 395 Ma) than previously known. Late Devonian magmatism in the Ganderian Aspy terrane is similar in age to that in the Avalonian Mira terrane (380 to 360 Ma) but the tectonic settings are different. In contrast, magmatic activity in the Bras d’Or terrane is almost exclusively arc-related in the Late Ediacaran (580 to 540 Ma) and rift-related in the Late Cambrian (520 to 490 Ma). The new data support the terrane distinctions previously documented.


Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 934
Author(s):  
Evangelos Tzamos ◽  
Micol Bussolesi ◽  
Giovanni Grieco ◽  
Pietro Marescotti ◽  
Laura Crispini ◽  
...  

The importance of magnesite for the EU economy and industry is very high, making the understanding of their genesis for the exploration for new deposits a priority for the raw materials scientific community. In this direction, the study of the magnesite-hosting ultramafic rocks can be proved very useful. For the present study, ultramafic rock samples were collected from the magnesite ore-hosting ophiolite of the Gerakini mining area (Chalkidiki, Greece) to investigate the consecutive alteration events of the rocks which led to the metallogenesis of the significant magnesite ores of the area. All samples were subjected to a series of analytical methods for the determination of their mineralogical and geochemical characteristics: optical microscopy, XRD, SEM, EMPA, ICP–MS/OES and CIPW normalization. The results of these analyses revealed that the ultramafic rocks of the area have not only all been subjected to serpentinization, but these rocks have also undergone carbonation, silification and clay alteration. The latter events are attributed to the circulation of CO2-rich fluids responsible for the formation of the magnesite ores and locally, the further alteration of the serpentinites into listvenites. The current mineralogy of these rocks was found to be linked to one or more alteration event that took place, thus a significant contribution to the metallo- and petrogenetic history of the Gerakini ophiolite has been made. Furthermore, for the first time in literature, Fe inclusions in olivines from Greece were reported.


2009 ◽  
Vol 60 (6) ◽  
pp. 495-504 ◽  
Author(s):  
Ioan Balintoni ◽  
Constantin Balica ◽  
Monica Cliveţi ◽  
Li-Qiu Li ◽  
Horst Hann ◽  
...  

The emplacement age of the Muntele Mare Variscan granite (Apuseni Mountains, Romania)Like the Alps and Western Carpathians, the Apuseni Mountains represent a fragment of the Variscan orogen involved in the Alpine crustal shortenings. Thus the more extensive Alpine tectonic unit in the Apuseni Mountains, the Bihor Autochthonous Unit is overlain by several nappe systems. During the Variscan orogeny, the Bihor Unit was a part of the Someş terrane involved as the upper plate in subduction, continental collision and finally in the orogen collapse and exhumation. The Variscan thermotectonic events were marked in the future Bihor Unit by the large Muntele Mare granitoid intrusion, an S-type anatectic body. Zircon U-Pb laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) dating yielded a weighted mean age of 290.9 ± 3.0 Ma and a concordia age of 291.1 ± 1.1 Ma. U-Pb isotope dilution zircon analyses yielded a lower intercept crystallization age of 296.6 + 5.7/-6.2 Ma. These two ages coincide in the error limits. Thus, the Muntele Mare granitoid pluton is a sign of the last stage in the Variscan history of the Apuseni Mountains. Many zircon grains show inheritance and/or Pb loss, typical for anatectic granitoid, overprinted by later thermotectonic events.


2013 ◽  
Vol 150 (6) ◽  
pp. 1103-1126 ◽  
Author(s):  
DETA GASSER ◽  
ARILD ANDRESEN

AbstractThe tectonic origin of pre-Devonian rocks of Svalbard has long been a matter of debate. In particular, the origin and assemblage of pre-Devonian rocks of western Spitsbergen, including a blueschist-eclogite complex in Oscar II Land, are enigmatic. We present detrital zircon U–Pb LA-ICP-MS data from six Mesoproterozoic to Carboniferous samples and one U–Pb TIMS zircon age from an orthogneiss from Oscar II Land in order to discuss tectonic models for this region. Variable proportions of Palaeo- to Neoproterozoic detritus dominate the metasedimentary samples. The orthogneiss has an intrusion age of 927 ± 3 Ma. Comparison with detrital zircon age spectra from other units of similar depositional age within the North Atlantic region indicates that Oscar II Land experienced the following tectonic history: (1) the latest Mesoproterozoic sequence was part of a successor basin which originated close to the Grenvillian–Sveconorwegian orogen, and which was intruded byc. 980–920 Ma plutons; (2) the Neoproterozoic sediments were deposited in a large-scale basin which stretched along the Baltoscandian margin; (3) the eclogite-blueschist complex and the overlying Ordovician–Silurian sediments probably formed to the north of the Grampian/Taconian arc; (4) strike-slip movements assembled the western coast of Spitsbergen outside of, and prior to, the main Scandian collision; and (5) the remaining parts of Svalbard were assembled by strike-slip movements during the Devonian. Our study confirms previous models of complex Caledonian terrane amalgamation with contrasting tectonic histories for the different pre-Devonian terranes of Svalbard and particularly highlights the non-Laurentian origin of Oscar II Land.


2015 ◽  
Vol 52 (7) ◽  
pp. 444-465 ◽  
Author(s):  
Christopher R.M. McFarlane

The Matthew Creek Metamorphic Zone (MCMZ) exposes what is inferred to be the lowest structural level of the lower Aldridge Formation in the Canadian portion of the Belt–Purcell Supergroup. Zircon, monazite, and titanite were dated using the U–Pb system by LA–ICP–MS. The detrital zircon populations of quartzite layers in these rocks define a provenance dominated by sources of Laurentian affinity with a minor component of non-North American ages between 1600 and 1490 Ma. Special attention was paid to monazite in sillimanite-grade metapelitic schists that was analyzed using in situ LA–ICP–MS techniques guided by BSE imaging and compositional mapping. Textural and geochronological evidence indicate that coupled dissolution–reprecipitation affected detrital monazite at 1413 ± 10 Ma. This was followed by prograde monazite growth at 1365 ± 10 Ma, synchronous with crystallization of the nearby Hellroaring Creek peraluminous granite at 1365 ± 5 Ma. Late-stage pegmatite emplacement and ductile shearing along the contact of the MCMZ and overlying rocks occurred at 1335 ± 5 Ma, interpreted as a period of post-collisional extension, core complex formation, exhumation, and decompression melting. The entire package was subsequently affected by a pervasive ∼1050 Ma hydrothermal overprint that partially reset U–Pb dates in monazite, zircon, and titanite contained in all lithologies examined. The lowermost Belt–Purcell stratigraphy in southeast British Columbia preserves a detailed record of sedimentary provenance and a long history of episodic collision and extension that must be reconciled with plate reconstruction models for the break-up of the Nuna supercontinent and assembly of Rodinia.


Sign in / Sign up

Export Citation Format

Share Document