Self-assembly of cerium compound nanopetals via a hydrothermal process: Synthesis, formation mechanism and properties

2006 ◽  
Vol 179 (6) ◽  
pp. 1733-1738 ◽  
Author(s):  
Yuelan Zhang ◽  
Zhitao Kang ◽  
Jian Dong ◽  
Harry Abernathy ◽  
Meilin Liu
2012 ◽  
Vol 174-177 ◽  
pp. 592-595
Author(s):  
Lin Lin Yang ◽  
Yong Gang Wang ◽  
Yu Jiang Wang ◽  
Xiao Feng Wang

The organization of nanostructures across extended length scales is a key challenge in the design of integrated materials with advanced functions. PbZr0.52Ti0.48O3multilayer disks which were constructed by oriented rectangle nanoparticles were easily prepared by a simple surfactant-free hydrothermal process. The as-prepared powders were characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). The results indicated that the as-prepared PZT disks were constructed by self-assembly of rectangle nanoparticles by a perfect manner. The formation mechanism of the products was discussed.


2012 ◽  
Vol 528 ◽  
pp. 176-179
Author(s):  
Yong Gang Wang ◽  
Lin Lin Yang ◽  
Xin Wang ◽  
Song Li ◽  
Yu Jiang Wang ◽  
...  

Using polymer as a surfactant, we successfully synthesized of PbTiO3 crystals with a self-assembly structure by a hydrothermal process. The as-obtained powders were characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). The results show that the presence of PVP, PEG and PVA plays a key role on the formation of self-assembly structure and the corresponding formation mechanism was briefly discussed.


2019 ◽  
Vol 7 (11) ◽  
pp. 3286-3293 ◽  
Author(s):  
Baoxi Feng ◽  
Zhen Xu ◽  
Jiayu Wang ◽  
Fei Feng ◽  
Lin Wang ◽  
...  

A self-assembly mechanism is demonstrated for the formation of polymer nanofilms based on real-time visualization and molecular dynamics simulations.


Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2220 ◽  
Author(s):  
Szu-Chen Wu ◽  
Po-Hsueh Chang ◽  
Chieh-Yen Lin ◽  
Cheng-Hsiung Peng

In this study, Ca-based multi-metals metal-organic framework (CaMgAl-MOF) has been designed as precursor material for carbon dioxide (CO2) capture to enhance the CO2 capture capacity and stability during multiple carbonation-calcination cycles. The CaMgAl-MOFs were constructed from self-assembly of metal ions and organic ligands through hydrothermal process to make metal ions uniformly distributed through the whole structure. Upon heat treatment at 600 °C, the Ca-based multi-metals CaMgAl-MOF would gradually transform to CaO and MgO nanoparticles along with the amorphous aluminum oxide distributed in the CaO matrix. XRD, Fourier transform infrared (FTIR), and SEM were used to identify the structure and characterize the morphology. The CO2 capture capacity and multiple carbonation-calcination cyclic tests of calcined Ca-based metal-organic framework (MOF) (attached with O and indicated as Ca-MOF-O) were performed by thermal gravimetric analysis (TGA). The single metal component calcined Ca-MOF sorbent have the highest CO2 capture capacity up to 72 wt.%, but a lower stability of 61% due to severe particle aggregation. In contrast, a higher Ca-rich MOF oxide sorbent with tailoring the Mg/Al ratios, Ca0.97Mg0.025Al0.005-MOF-O, showed the best performance, not only having the high stability of ~97%, but also maintaining the highest capacity of 71 wt.%. The concept of using Ca-based MOF materials combined with mixed-metal ions for CO2 capture showed a potential route for achieving efficient multiple carbonation-calcination CO2 cycles.


2013 ◽  
Vol 710 ◽  
pp. 716-719
Author(s):  
Bo Du ◽  
Zi Lu Wang ◽  
Xue Hao He

Understanding how nanoparticles self-assemble into specific structures is important in biology. The self-assembly structures of disc-shaped nanoparticles are investigated using Gay Berne potential. Through the simulated annealing Monte Carlo simulation underNVTcondition, we found that various nanostructures such as nematic phase and isotropic phase are discovered. The formation mechanism of these novel nanostructures is discussed.


NANO ◽  
2007 ◽  
Vol 02 (01) ◽  
pp. 21-30 ◽  
Author(s):  
S. IRLE ◽  
G. ZHENG ◽  
Z. WANG ◽  
K. MOROKUMA

Though subject to intensive studies, the formation mechanism of buckminsterfullerene C 60 and related higher fullerenes has long evaded discovery. To elucidate their atomistic self-assembly mechanism, we have performed high-temperature quantum chemical molecular dynamics simulations on carbon vapor model systems initially consisting of C 2 molecules. Our simulations reveal a coherent mechanism how highly ordered fullerene cages naturally self-assemble under nonequilibrium conditions, following a series of irreversible processes from the polymerization of C 2 molecules to vibrationally excited giant fullerenes, which then shrink by C 2 evaporation down to the smallest spherical, isolated pentagon rule obeying species C 70 and C 60 as the smallest and kinetically most stable species of the shrinking process. We show that the potential energy surface associated with giant fullerene cage growth, measured by an average cluster curvature, is downhill all the way, and in agreement with high-level energetics from density functional theory. This fullerene formation mechanism is a good example of dynamic self-assembly leading to dissipative structures far from thermodynamic equilibrium, and the "shrinking hot giant" road provides a natural explanation for the observed cage size distributions in a random optimization process consistent with several important experimental observations.


2007 ◽  
Vol 121-123 ◽  
pp. 287-290 ◽  
Author(s):  
Ke Feng Cai ◽  
Q. Lei ◽  
C. Yan ◽  
L.C. Zhang

Te nanomaterials, with different morphologies, such as nanospheres, micro- and nanobranches, and microtrees with tubular nanobranches were prepared by physical vapor deposition method, using elemental Te powder as starting material. The composition and morphology of the nanomaterials were characterized by XRD, SEM/EDX and TEM. The formation mechanism of the above mentioned nanostructures was proposed.


Sign in / Sign up

Export Citation Format

Share Document