scholarly journals Land use optimization tool for sustainable intensification of high-latitude agricultural systems

2019 ◽  
Vol 88 ◽  
pp. 104104 ◽  
Author(s):  
Pirjo Peltonen-Sainio ◽  
Lauri Jauhiainen ◽  
Heikki Laurila ◽  
Jaana Sorvali ◽  
Eija Honkavaara ◽  
...  
Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 101
Author(s):  
Antonio J. Mendoza-Fernández ◽  
Araceli Peña-Fernández ◽  
Luis Molina ◽  
Pedro A. Aguilera

Campo de Dalías, located in southeastern Spain, is the greatest European exponent of greenhouse agriculture. The development of this type of agriculture has led to an exponential economic development of one of the poorest areas of Spain, in a short period of time. Simultaneously, it has brought about a serious alteration of natural resources. This article will study the temporal evolution of changes in land use, and the exploitation of groundwater. Likewise, this study will delve into the technological development in greenhouses (irrigation techniques, new water resources, greenhouse structures or improvement in cultivation techniques) seeking a sustainable intensification of agriculture under plastic. This sustainable intensification also implies the conservation of existing natural areas.


2021 ◽  
Vol 13 (4) ◽  
pp. 2077
Author(s):  
Mahnaz Sarlak ◽  
Laura Valeria Ferretti ◽  
Rita Biasi

About two billion rural individuals depend on agricultural systems associated with a high amount of risk and low levels of yield in the drylands of Asia, Africa, and Latin America. Human activities, climate change and natural extreme events are the most important drivers of desertification. This phenomenon has occurred in many regions of Iran, particularly in the villages in the periphery of the central desert of Iran, and has made living in the oases so difficult that the number of abandoned villages is increasing every year. Land abandonment and land-use change increase the risk of desertification. This study aims to respond to the research questions: (i) does the planning of green infrastructures on the desert margin affect the distribution and balance of the population? (ii) how should the green belt be designed to have the greatest impact on counteracting desertification?, and (iii) does the design of productive landscape provide the solution? Through a wide-ranging and comprehensive approach, this study develops different scenarios for designing a new form of green belt in order to sustainably manage the issues of environmental protection, agricultural tradition preservation and desertification counteraction. This study proposes a new-traditional greenbelt including small low-cost and low-tech projects adapted to rural scale.


Water ◽  
2016 ◽  
Vol 8 (11) ◽  
pp. 505 ◽  
Author(s):  
Zhiwei Wang ◽  
Shengtian Yang ◽  
Changsen Zhao ◽  
Juan Bai ◽  
Hezhen Lou ◽  
...  

2019 ◽  
Author(s):  
Fayong Li ◽  
Xinqiang Liang ◽  
Hua Li ◽  
Yingbin Jin ◽  
Junwei Jin ◽  
...  

Abstract Background Colloid-facilitated phosphorus (P) transport is a recognized important pathway for soil P loss in agricultural systems, but limited information is available on the soil aggregate-associated colloidal P. To elucidate the effects of aggregate size on the loss potential of colloidal P (P coll ) in agricultural systems, soils (0-20 cm depth) from six land use types were sampled in Zhejiang province in the Yangtz river delta region, China. The aggregate size fractions (2–8 mm, 0.26–2 mm, 0.053–0.26 mm and <0.053 mm) separated by wet-sieving method were analyzed.Results Results showed that the 0.26–2 mm small macroaggregates had the highest total P (TP) content. For acidic soils, the highest P coll content was also found in the 0.26–2 mm aggregate size, while the lowest was found in the <0.053 mm (silt+clay)-sized particles, the opposite of that found in alkaline soils. Paddy soils contained less P coll than other land use types. The P coll in total dissolved P (TDP) was dominated by <0.053 mm (silt+clay)-sized particles. Aggregate size did strongly influence the loss potential of P coll in paddy soils, where P coll contributed up to 83% TDP in the silt+clay sized particles. The P coll content was positively correlated with TP, Al, Fe and mean weight diameter (MWD). Aggregate associated total carbon (TC), total nitrogen (TN), C/P, and C/N had significant, but negative effects on the contribution of P coll to potential soil P losses. The P coll content of the aggregates was controlled by aggregate associated TP and Al content as well as soil pH value, with P coll loss potential from aggregates being controlled by its organic matter content.Conclusion Therefore, we conclude that management practices that increase soil aggregate stability or its organic carbon content will limit P coll loss from agricultural systems.


Sign in / Sign up

Export Citation Format

Share Document