N-acetylcysteine prevents glucose/glucose oxidase-induced oxidative stress, mitochondrial damage and apoptosis in H9c2 cells

Life Sciences ◽  
2009 ◽  
Vol 84 (11-12) ◽  
pp. 328-336 ◽  
Author(s):  
Santosh Kumar ◽  
Sandhya L. Sitasawad
Author(s):  
Haiyun Sun ◽  
Chong Wang ◽  
Ying Zhou ◽  
Xingbo Cheng

Objective: Diabetic cardiomyopathy (DCM) is an important complication of diabetes. This study was attempted to discover the effects of long noncoding RNA OIP5-AS1 (OIP5-AS1) on the viability and oxidative stress of cardiomyocyte in DCM. Methods: The expression of OIP5-AS1 and microRNA-34a (miR-34a) in DCM was detected by qRT-PCR. In vitro, DCM was simulated by high glucose (HG, 30 mM) treatment in H9c2 cells. The viability of HG (30 mM)-treated H9c2 cells was examined by MTT assay. The reactive oxygen species (ROS), superoxide dismutase (SOD) and malondialdehyde (MDA) levels were used to evaluate the oxidative stress of HG (30 mM)-treated H9c2 cells. Dual-luciferase reporter assay was used to confirm the interactions among OIP5-AS1, miR-34a and SIRT1. Western blot was applied to analyze the protein expression of SIRT1. Results: The expression of OIP5-AS1 was down-regulated in DCM, but miR-34a was up-regulated. The functional experiment stated that OIP5-AS1 overexpression increased the viability and SOD level, while decreased the ROS and MDA levels in HG (30 mM)-treated H9c2 cells. The mechanical experiment confirmed that OIP5-AS1 and SIRT1 were both targeted by miR-34a with the complementary binding sites at 3′UTR. MiR-34a overexpression inhibited the protein expression of SIRT1. In the feedback experiments, miR-34a overexpression or SIRT1 inhibition weakened the promoting effect on viability, and mitigated the reduction effect on oxidative stress caused by OIP5-AS1 overexpression in HG (30 mM)-treated H9c2 cells. Conclusions: OIP5-AS1 overexpression enhanced viability and attenuated oxidative stress of cardiomyocyte via regulating miR-34a/SIRT1 axis in DCM, providing a new therapeutic target for DCM.


LWT ◽  
2012 ◽  
Vol 47 (2) ◽  
pp. 512-515 ◽  
Author(s):  
Adriano G. Cruz ◽  
Wellington F. Castro ◽  
Jose A.F. Faria ◽  
Stanislau Bogusz ◽  
Daniel Granato ◽  
...  

PLoS ONE ◽  
2018 ◽  
Vol 13 (4) ◽  
pp. e0196191 ◽  
Author(s):  
Takeaki Shinjo ◽  
Tatsuhide Tanaka ◽  
Hiroaki Okuda ◽  
Akira T. Kawaguchi ◽  
Kentaro Oh-hashi ◽  
...  

Animals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3437
Author(s):  
Dan Xu ◽  
Lizi Yin ◽  
Juchun Lin ◽  
Hualin Fu ◽  
Xi Peng ◽  
...  

Aristolochic acid (AA) is a component of traditional Chinese herbs and commonly used for farm animals in China. Over-exposure of AA has been proven to be associated with hepatotoxicity; however, the mechanism of action of AA-I-induced hepatotoxicity remains unknown. In the current study, a subchronic toxicity test was conducted to evaluate the mechanism of AA-induced hepatotoxicity in Tianfu broilers. According to the results, AA-I-induced hepatotoxicity in Tianfu broilers was evidenced by the elevation of liver weight, levels of serum glutamic oxalacetic transaminase (GOT) and glutamic-pyruvic transaminase (GPT). Furthermore, hepatocyte swelling, vesicular degeneration and steatosis were observed. Additionally, AA-I elevated the production of reactive oxygen species (ROS) and induced oxidative stress, which further led to excessive apoptosis, characterized by mitochondrial depolarization, upregulation of Bax, and down-regulation of Bcl-2 expression. In conclusion, the mechanism of AA-I-induced hepatotoxicity was associated with oxidative-stress-mediated apoptosis and mitochondrial damage.


Author(s):  
MOHAN DURGA ◽  
THIYAGARAJAN DEVASENA

Objective: Phytochemicals are known to elicit potential antioxidant activity. This study examined the cardioprotective effects of quercetin against oxidative damage to rat cardiomyocyte cells (H9c2) after treatment with Diesel Exhaust Nanoparticles (DEPs) or Petrol Exhaust Nanoparticles (PEPs). Methods: Cardiomyocyte cells were exposed to DEPs or PEPs alone and in a combination with quercetin for 24 h. Results: Results showed that quercetin had no lethal effect on H9c2 cells up to a concentration of 1.0 μg/ml. Exposure to DEPs (4.0 μg/ml) or PEPs (10.0 μg/ml) induced cytotoxicity, oxidative stress, and inflammation (p<0.05). It also provoked lipid peroxidation by an increase in MDA and a decrease in SOD activity and glutathione activity (p<0.05). Simultaneous addition of quercetin restored these parameters to near normal. Conclusion: These results thus specify that quercetin plays a protective role in cardiac cells exposed to DEPs and PEPs.


2020 ◽  
Vol 49 (10) ◽  
pp. 2499-2506
Author(s):  
Nur Liyana Mohammed Yusof ◽  
Tengku Nurul Tasnim Tengku Affendi ◽  
Fatin Farhana Jubaidi ◽  
Satirah Zainalabidin ◽  
Siti Balkis Budin

2021 ◽  
Vol 14 ◽  
Author(s):  
Yousef Faridvand ◽  
Maryam Nemati ◽  
Elham Zamani-Gharehchamani ◽  
Hamid Reza Nejabati ◽  
Arezoo Rezaie Nezhad Zamani ◽  
...  

Background: Dapagliflozin, a selective Sodium-glucose cotransporter-2 (SGLT2) inhibitor, has been shown to play a key role in the control and management of the metabolic and cardiac disease. Objective: The current study aims to address the effects of dapagliflozin on the expression of fractalkine (FKN), known as CX3CL1, and its receptors CX3CR1, Nuclear factor-kappa B(NF-κB) p65 activity, Reactive oxygen species (ROS), and inflammation in LPS-treated H9c2 cell line. Methods: H9c2 cells were cultured with lipopolysaccharide (LPS) to establish a model of LPS-induced damage and then subsequently were treated with dapagliflozin for 72 h. Our work included measurement of cell viability (MTT), Malondialdehyde (MDA), intracellular ROS, tumor necrosis factor-α (TNF-α), NF-κB activity, and expression CX3CL1/CX3CR1. Results: The results showed that LPS-induced reduction of cell viability was successfully rescued by dapagliflozin treatment. The cellular levels of MDA, ROS, and TNF-α, as an indication of cellular oxidative stress and inflammation, were significantly elevated in H9c2 cells compared to the control group. Furthermore, dapagliflozin ameliorated inflammation and oxidative stress through the modulation of the levels of MDA, TNF-α, and ROS. Correspondingly, dapagliflozin reduced the expression of CX3CL1/CX3CR1, NF-κB p65 DNA binding activity and it also attenuated nuclear acetylated NF-κB p65 in LPS-induced injury in H9c2 cells compared to untreated cells. Conclusion: These findings shed light on the novel pharmacological potential of dapagliflozin in the alleviation of LPS-induced CX3CL1/CX3CR1-mediated injury in inflammatory conditions such as sepsis-induced cardiomyopathy.


Sign in / Sign up

Export Citation Format

Share Document