Dapagliflozin protects H9c2 cells against injury induced by lipopolysaccharide via suppression of CX3CL1/CX3CR1 axis and NF-κB activity

2021 ◽  
Vol 14 ◽  
Author(s):  
Yousef Faridvand ◽  
Maryam Nemati ◽  
Elham Zamani-Gharehchamani ◽  
Hamid Reza Nejabati ◽  
Arezoo Rezaie Nezhad Zamani ◽  
...  

Background: Dapagliflozin, a selective Sodium-glucose cotransporter-2 (SGLT2) inhibitor, has been shown to play a key role in the control and management of the metabolic and cardiac disease. Objective: The current study aims to address the effects of dapagliflozin on the expression of fractalkine (FKN), known as CX3CL1, and its receptors CX3CR1, Nuclear factor-kappa B(NF-κB) p65 activity, Reactive oxygen species (ROS), and inflammation in LPS-treated H9c2 cell line. Methods: H9c2 cells were cultured with lipopolysaccharide (LPS) to establish a model of LPS-induced damage and then subsequently were treated with dapagliflozin for 72 h. Our work included measurement of cell viability (MTT), Malondialdehyde (MDA), intracellular ROS, tumor necrosis factor-α (TNF-α), NF-κB activity, and expression CX3CL1/CX3CR1. Results: The results showed that LPS-induced reduction of cell viability was successfully rescued by dapagliflozin treatment. The cellular levels of MDA, ROS, and TNF-α, as an indication of cellular oxidative stress and inflammation, were significantly elevated in H9c2 cells compared to the control group. Furthermore, dapagliflozin ameliorated inflammation and oxidative stress through the modulation of the levels of MDA, TNF-α, and ROS. Correspondingly, dapagliflozin reduced the expression of CX3CL1/CX3CR1, NF-κB p65 DNA binding activity and it also attenuated nuclear acetylated NF-κB p65 in LPS-induced injury in H9c2 cells compared to untreated cells. Conclusion: These findings shed light on the novel pharmacological potential of dapagliflozin in the alleviation of LPS-induced CX3CL1/CX3CR1-mediated injury in inflammatory conditions such as sepsis-induced cardiomyopathy.

2016 ◽  
Vol 94 (7) ◽  
pp. 745-751 ◽  
Author(s):  
Nagla A. El-Sherbeeny ◽  
Ghalia M. Attia

Nephrotoxicity is a dose-limiting side effect of cisplatin (CSP). The study investigated the possible protective role of trimetazidine (TMZ) against CSP-induced nephrotoxicity in rats. Rats were divided into four groups; control, TMZ, CSP, and CSP + TMZ. The CSP group showed significant deterioration in kidney function with structural changes in the form of interstitial hemorrhage, glomeruli shrinkage and peritublar capillary congestion, tubular cells vacuolation, pyknosis, shedding and necrosis, and inflammatory cell infiltrates, all indicating renal damage. CSP also caused a significant increase in the lipid peroxidation marker malondialdehyde (MDA) levels, renal nuclear factor kappa B (NF-κB) DNA-binding activity and protein expression, and tumor necrosis factor alpha (TNF-α) and IL-6 levels. Treatment with TMZ before and after CSP injection produced significant improvement of kidney function and histopathology. TMZ treatment also significantly attenuated CSP-induced oxidative stress and suppressed elevated levels of TNF-α and IL-6 and NF-κB expression and its DNA-binding activity caused by CSP administration. TMZ has a protective effect against CSP-induced nephrotoxicity mediated by reduction of oxidative stress and attenuation of CSP-induced inflammation.


Author(s):  
Weiran Dai ◽  
Shuang Zhou ◽  
Guoqiang Zhong ◽  
Zhiyuan Jiang

IntroductionRecently, enhanced activation of NLRP3 has been reported to be involved in atrial fibrillation (AF). This study aimed to detect the correlation between oxidative stress and NLRP3 and explore the role of miR-223-3p in the injury of ROS induced by Ang II.Material and methodsSerum Ang II levels were examined by ELISA kit. Fibrosis levels of right atrial appendages were determined by Masson’s staining. H9c2 cells tansfected with miR-223-3p mimics were treated with Ang II with or without MCC950 (a potent selective NLRP3 inhibitor). Cell viability was detected by CCK-8 assay. Protein abundance was detected by Western blot. MDA assay and DCFH-DA were used to measured oxidative stress. RT-qPCR was used to assay the expression of miR-223-3p and NLRP3.ResultsTotally, 43 patients enrolled in this study, including 20 patients with persistent (chronic) AF (cAF). Comparing with sinus rhythm (SR) group, we found an enhanced activation of NLRP3 inflammasome which were positively correlated with oxidative stress and serum Ang II level in cAF patients. Ang II induced ROS generation and inhibited the H9c2 cell viability. In addition, overexpression of miR-223-3p functioned as MCC950 which inhibited the expression of NLRP3 inflammasome and partly attenuated the effects of ROS induced by Ang II on H9c2 cell viability. Lastly, we used luciferase assay to confirm NLRP3 as a direct target gene of miR-223-3p.ConclusionsmiR-223-3p has protective effects on oxidative stress induced by Ang II in AF by targeting NLRP3 and could provide a new potential intervention targets for treatment of AF.


2020 ◽  
Vol 40 (5) ◽  
Author(s):  
Guanxue Xu ◽  
Wei Zhang ◽  
Zhenglong Wang ◽  
Man Chen ◽  
Bei Shi

Abstract Matrine is a main active constituent of Chinese herb Sophora flavescens Ait (Kushen), which has shown various pharmacological effects, and has been reported to exhibit protective effects in heart failure. In the present study, the underlying mechanism of matrine was explored in H2O2-induced H9c2 cell line. It was confirmed that matrine could alleviate H2O2-induced injury in H9c2 cells. And the down-regulation of long non-coding RNA HOTAIR induced by H2O2 could be reversed by treating with matrine. Moreover, overexpression of HOTAIR promoted cell viability and superoxide dismutase (SOD) level, but inhibited cell apoptosis and lactate dehydrogenase (LDH) level. We found that miR-106b-5p was a target of HOTAIR and negatively regulated by HOTAIR. Moreover, up-regulation of miR-106b-5p restored the effects of HOTAIR overexpression on cell viability, apoptosis, and the levels of LDH and SOD. In addition, matrine protected H9c2 cells from H2O2-induced injury through HOTAIR/miR-106b-5p axis. Furthermore, we discovered that matrine exerted protective effects on H2O2-induced H9c2 cells through activating STAT3 and AKT pathway. In brief, matrine modulated H2O2-induced myocardial oxidative stress repair through HOTAIR/miR-106b-5p axis via AKT and STAT3 signaling pathway. Our study may provide a therapeutic target for the therapy of oxidative stress heart diseases.


2021 ◽  
Vol 20 (10) ◽  
pp. 2029-2034
Author(s):  
Runqin Li ◽  
Dengfeng Ma ◽  
Zhihua Fu ◽  
Xiaoxuan Zheng ◽  
Wenxiu Li

Purpose: To investigate the effect of forsythiaside A on heart failure.Methods: An in vitro cell model of myocardial injury was established by incubating H9c2 primary cardiomyocytes with hydrogen peroxide (H2O2). Apoptosis was measured by flow cytometry. Expression of inflammatory factors, including tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), was determined by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and enzymelinkedimmunosorbent assay (ELISA). Oxidative stress was evaluated by measuring malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) levels by ELISA.Results: Incubation with H2O2 increased H9c2 cell apoptosis (p < 0.001). Treatment with forsythiaside A reduced Bax expression and enhanced Bcl-2 expression which suppressed apoptosis of H2O2- induced H9c2 cells. Forsythiaside A also attenuated the H2O2-induced increase in TNF-α and IL-6expressions in H9c2 cells (p < 0.001). The H2O2-induced increase in MDA and decrease in SOD and GSH-Px in H9c2 cells were reversed by treatment with forsythiaside A. IκBα protein expression was downregulated, whereas p65 phosphorylation (p-p65), p-IκBα, nuclear factor erythropoietin-2-related factor 2 (Nrf2), and heme oxygenase 1 (HO-1) were upregulated in H2O2-induced H9c2 cells. Forsythiaside A increased IκBα, Nrf2, and HO-1 expression and decreased p-p65 and p-IκBα expression in H2O2-induced H9c2 cells.Conclusion: Forsythiaside A exerts anti-inflammatory, anti-oxidant, and anti-apoptotic effects against H2O2-induced H9c2 cells through inactivation of NF-κB pathway and activation of Nrf2/HO-1 pathway. These results support the potential clinical application of forsythiaside A for the treatment of heart failure.


Nutrients ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1304 ◽  
Author(s):  
Vincenzo Quagliariello ◽  
Raffaele Vecchione ◽  
Carmela Coppola ◽  
Chiara Di Cicco ◽  
Alberta De Capua ◽  
...  

Doxorubicin is a highly active antineoplastic agent, but its clinical use is limited because of its cardiotoxicity. Although nutraceuticals endowed with anti-inflammatory properties exert cardioprotective activity, their bioavailability and stability are inconsistent. In an attempt to address this issue, we evaluated whether bioavailable nanoemulsions loaded with nutraceuticals (curcumin and fresh and dry tomato extracts rich in lycopene) protect cardiomyoblasts (H9C2 cells) from doxorubicin-induced toxicity. Nanoemulsions were produced with a high-pressure homogenizer. H9C2 cells were incubated with nanoemulsions loaded with different nutraceuticals alone or in combination with doxorubicin. Cell viability was evaluated with a modified MTT method. The levels of the lipid peroxidation products malondialdehyde (MDA) and 4-hydroxy-2-butanone (4-HNA), and of the cardiotoxic-related interleukins IL-6, IL-8, IL-1β and IL-10, tumor necrosis factor-alpha (TNF-α), and nitric oxide were analyzed in cardiomyoblasts. The hydrodynamic size of nanoemulsions was around 100 nm. Cell viability enhancement was 35–40% higher in cardiomyoblasts treated with nanoemulsion + doxorubicin than in cardiomyoblasts treated with doxorubicin alone. Nanoemulsions also protected against oxidative stress as witnessed by a reduction of MDA and 4-HNA. Notably, nanoemulsions inhibited the release of IL-6, IL-8, IL-1β, TNF-α and nitric oxide by around 35–40% and increased IL-10 production by 25–27% versus cells not treated with emulsions. Of the nutraceuticals evaluated, lycopene-rich nanoemulsions had the best cardioprotective profile. In conclusion, nanoemulsions loaded with the nutraceuticals described herein protect against cardiotoxicity, by reducing inflammation and lipid oxidative stress. These results set the stage for studies in preclinical models.


2021 ◽  
Vol 20 (9) ◽  
pp. 1887-1893
Author(s):  
Jing Xie ◽  
Yeyu Qin ◽  
Cheng Yu

 Purpose: To investigate the effects of leflunomide (Lef) on inflammatory response and apoptosis after myocardial infarction, and to explore its molecular mechanisms of action.Methods: H2O2 and H9c2 cells were used to establish myocardial cell injury model in vitro. H9c2 cells were divided into 3 groups: control group, H2O2 group, H2O2 + Lef group. The CCK-8 assay was used to determine the optimal concentration of H2O2 and Lef, while the expressions of TNF-α, IL-6, IL-1β, Bcl-2, Bax, Bad, TLR4, IκB-α, P65 and p-P65 were evaluated by Western blot. PCI was utilized to detect the expression of TNF-α, IL-6, IL-1β, Bcl-2, Bax and Bad mRNA. The levels of TNF-α, IL-6 and IL-1β in supernatant were assessed by ELISA, while apoptosis of the three groups was evaluated by TUNEL staining and flow cytometry.Results: Compared with H2O2 group, TNF-α, IL-6, IL-1β, Bax and Bad expressions in H2O2+Lef group were significantly reduced (p < 0.05), but Bcl-2 expression significantly increased. The levels of TNF-α and IL-6 and IL-1β in supernatant of H2O2 + Lef group were also decreased compared to those in the H2O2 group (p < 0.05). In addition, TUNEL-positive cells and apoptotic rates were significantly reduced after treatment with Lef. Moreover, Lef inhibited expression of TLR4 and p-P65, but activated expression of IκB-α, indicating that Lef inhibited TLR4/NF-κB pathway (p < 0.05).Conclusion: The results show that Lef inhibits H2O2-induced H9c2 cell apoptosis and inflammatory responses by inhibiting TLR4/NF-κB pathway. These findings may provide new targets for the treatment of myocardial infarction.


2018 ◽  
Vol 44 (4) ◽  
pp. 530-538
Author(s):  
Aysun Çetin ◽  
İhsan Çetin ◽  
Semih Yılmaz ◽  
Ahmet Şen ◽  
Göktuğ Savaş ◽  
...  

Abstract Background Limited research is available concerning the relationship between oxidative stress and inflammation parameters, and simultaneously the effects of rosuvastatin on these markers in patients with hypercholesterolemia. We aimed to investigate the connection between cytokines and oxidative stress markers in patients with hypercholesterolemia before and after rosuvastatin treatment. Methods The study consisted of 30 hypercholesterolemic patients diagnosed with routine laboratory tests and 30 healthy participants. The lipid parameters, interleukin-1 beta (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), paraoxonase-1 (PON1) and malondialdehyde (MDA) levels in controls and patients with hypercholesterolemia before and after 12-week treatment with rosuvastatin (10 mg/kg/day), were analyzed by means of enzyme-linked immunosorbent assay. Results It was found that a 12-week cure with rosuvastatin resulted in substantial reductions in IL-1β, IL-6 and TNF-α and MDA levels as in rising activities of PON1 in patients with hypercholesterolemia. Before treatment, the PON1 levels were significantly negatively correlated with TNF-α and IL-6 in control group, while it was positively correlated with TNF-α in patients. Conclusion Our outcomes provide evidence of protected effect of rosuvastatin for inflammation and oxidative damage. It will be of great interest to determine whether the correlation between PON1 and cytokines has any phenotypic effect on PON1.


2018 ◽  
Vol 50 (6) ◽  
pp. 2086-2096 ◽  
Author(s):  
Xiaohong  Zhang ◽  
Can Xiao ◽  
Hong Liu

Background/Aims: Ganoderic acid A (GAA) isolated from Ganoderma lucidum, shows various benefit activities, such as anti-tumor activity, anti-HIV activity and hepatoprotective activity. However, the potential effects of GAA on hypoxia-induced injury of cardiomyocytes are still unclear. In this study, we aimed to reveal the effects of GAA on hypoxic-induced H9c2 cell injury, as well as potential underlying molecular mechanisms. Methods: Rat H9c2 cardiomyocytes were cultured in hypoxia condition with different doses of GAA. Cell viability and apoptosis were detected by CCK-8 assay and flow cytometry, respectively. qRT-PCR was performed to assess the expression levels of microRNA-182-5p (miR-182-5p) and phosphatase and tensin homologue (PTEN). Cell transfection was conducted to change the expression levels of miR-182-5p and PTEN in H9c2 cells. Finally, protein levels of key factors involved in cell proliferation, cell apoptosis and PTEN/PI3K/AKT pathway were evaluated using western blotting. Results: Hypoxia treatment significantly induced H9c2 cell viability loss and apoptosis. GAA incubation remarkably protected H9c2 cells from hypoxia-induced viability loss, proliferation inhibition and apoptosis. In addition, GAA obviously enhanced the expression level of miR-182-5p in H9c2 cells. Suppression of miR-182-5p notably alleviated the protective effects of GAA on hypoxia-treated H9c2 cells. Furthermore, miR-182-5p negatively regulated the mRNA and protein levels of PTEN in H9c2 cells. GAA attenuated hypoxia-induced inactivation of PI3K/AKT pathway in H9c2 cells by up-regulating miR-182-5p and then down-regulating PTEN. Conclusion: GAA protected rat H9c2 cardiomyocytes from hypoxia-induced injury might via up-regulating miR-182-5p, down-regulating PTEN and then activating PI3K/AKT signaling pathway.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Chuanliang Liu ◽  
Jieqiong Zhang ◽  
Xuejie Lun ◽  
Lei Li

Objective. To explore the effect and related mechanism of LncRNA PVT1 on hypoxia-induced cardiomyocyte injury. Methods. PVT1RNA and miR-214-3p levels were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Cell vitality and apoptosis were, respectively, evaluated by Cell Counting Kit-8 (CCK-8) and flow cytometry analysis. Starbase and Dual luciferase reporter (DLR) gene assay was employed to validate the interaction between miR-214-3p and PVT1. Results. PVT1 was statistically upregulated, and miR-214-3p was statistically downregulated in hypoxia-induced H9c2 cells. The survival rate of H9c2 cells induced by hypoxia decreased statistically, while the apoptosis rate increased statistically ( P < 0.05 ). PVT1 knockdown upregulated the hypoxia-induced H9c2 cell viability and inhibited apoptosis. DLR assay verified the targeting relationship between PVT1 and miR-214-3p. In addition, miR-214-3p inhibitors reversed the viability of H9c2 cells with PVT1 knockout and promoted apoptosis. Conclusion. Silencing PVT1 can enhance the hypoxia-induced H9c2 cell viability and inhibit apoptosis, providing a potential target for the treatment of cardiovascular diseases.


2021 ◽  
Vol 7 (5) ◽  
pp. 1245-1253
Author(s):  
Na Yu ◽  
Xue Han ◽  
Xueqin Wang ◽  
Wanling Yu ◽  
Liqiu Yan

This paper aimed to investigate LncRNA XIST relieving hypoxia-induced damage in H9C2 cells by downregulating miR-429. Rat H9C2 cell lines were selected and divided into a normal control group, a hypoxia group, a XIST expression group, a XIST blank expression group, a miR-429 interference group and a blank interference group. qPCR was adopted for detecting LncRNA XIST and miR-429 expression. Western blot (WB) was adopted for detecting the expression of AMPK, PDH, FAT, MCPT-1, Caspase-3, Bax and Bcl-2, ATP content, and levels of SOD, MDA and LDH. Dual luciferase reporter gene assay (DLRGA) and RNA pull-down were adopted for verifying the correlation of LncRNA XIST with miR-429. Hypoxia-induced H9C2 cells had low LncRNA XIST expression and high miR-429 expression. LncRNA XIST upregulation or miR-429 downregulation could inhibit AMPK, PDH, Caspase-3 and Bax, upregulate FAT, MCPT-1 and Bcl-2, and increase ATP content and SOD activity, as well as reduce MDA content and LDH activity. miR-429 was the target gene of LncRNA XIST. LncRNA XIST can relieve hypoxia-induced damage in H9C2 cells via binding to and downregulating miR-429


Sign in / Sign up

Export Citation Format

Share Document