Microencapsulation of Lactobacillus plantarum ATCC 8014 through spray drying and using dairy whey as wall materials

LWT ◽  
2017 ◽  
Vol 82 ◽  
pp. 176-183 ◽  
Author(s):  
Camila Eckert ◽  
Vanessa Garcia Serpa ◽  
Adriani Cristina Felipe dos Santos ◽  
Simone Marinês da Costa ◽  
Viviane Dalpubel ◽  
...  
2020 ◽  
Vol 43 (8) ◽  
Author(s):  
Luis Isaac Ceja‐Medina ◽  
Rosa Isela Ortiz‐Basurto ◽  
Luis Medina‐Torres ◽  
Fausto Calderas ◽  
Maria Josefa Bernad‐Bernad ◽  
...  

Food Research ◽  
2019 ◽  
Vol 4 (2) ◽  
pp. 320-326
Author(s):  
Reifrey, A. Lascano ◽  
M.G.L.D. Gan ◽  
A.S.L. Sulabo ◽  
D.M.O. Santiago ◽  
L.B. Ancheta ◽  
...  

The study aimed to develop a non-dairy-based probiotic-supplemented product using an underutilized crop in the Philippines such as the yellow passion fruit (Passiflora edulis f. flavicarpa Deg.). The physico-chemical properties (moisture content, water activity, pH, and total soluble solids), probiotics stability at different storage temperatures (4°C, 25°C, and 37°C), and the sensory characteristics of Lactobacillus plantarum S20-supplemented passion fruit juice powder was evaluated. Passion fruit juice powder and L. plantarum S20 were first prepared using low-temperature spray drying utilizing maltodextrin as a carrier, with yield as 42.97% and 21.17%, respectively. Spray drying of probiotics culture also resulted in 42.68% log survivability. The formulated juice powder had a final moisture content of 1.729±0.38% and water activity of 0.398±0.0051, and with recommended dilution with water, had a final pH and total soluble solids of 3.40±0.10 and 12.00±0.00° Brix, respectively. Results also showed that storage of the formulated juice powder at 4°C yielded the highest probiotic stability, maintaining a viable log count of 4.27 per g, while storage at 37°C showed no microbial growth. Sensory evaluation of probioticsupplemented passion fruit juice against a non-probiotic-supplemented one revealed significant difference in terms of color, sweetness, and sourness, while no significant difference was observed in terms of aroma, mouthfeel, and general acceptability.


2014 ◽  
Vol 7 (8) ◽  
pp. 2354-2365 ◽  
Author(s):  
Parastoo Pourashouri ◽  
Bahare Shabanpour ◽  
Seid Hadi Razavi ◽  
Seid Mahdi Jafari ◽  
Ali Shabani ◽  
...  

2020 ◽  
Vol 57 (11) ◽  
pp. 4111-4122 ◽  
Author(s):  
María José Navarro-Flores ◽  
Lucía María C. Ventura-Canseco ◽  
Rocío Meza-Gordillo ◽  
Teresa del Rosario Ayora-Talavera ◽  
Miguel Abud-Archila

Processes ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 40 ◽  
Author(s):  
Nguyen Phu Thuong Nhan ◽  
Vo Tan Thanh ◽  
Mai Huynh Cang ◽  
Tri Duc Lam ◽  
Nguyen Cam Huong ◽  
...  

The purpose of this study was to attempt the encapsulation of lemongrass (Cymbopogon citratus) essential oil utilizing spray drying technique. An array of process parameters including concentration of wall (15–30%), type of wall materials (maltodextrin, maltodextrin and gum Arabic mixture), and concentration of essential oil (0.5–2.0%) were thoroughly investigated. The results show that the use of sole maltodextrin as encapsulant gave microcapsules characteristics comparable to that of powder produced using maltodextrin and gum Arabic mixture. The encapsulation process that was performed with maltodextrin at the concentration of 30% as wall material and lemongrass essential oil at the concentration of 1.5% as core material showed highest drying yield (84.49%), microencapsulation yield (89.31%) and microencapsulation efficiency (84.75%). Encapsulated essential oils retained most of their major constituents in comparison with the bare essential oils without any significant compromise in product quality.


Sign in / Sign up

Export Citation Format

Share Document