Water activity, not moisture content, explains the influence of water on powder flowability

LWT ◽  
2019 ◽  
Vol 100 ◽  
pp. 35-39 ◽  
Author(s):  
E. Juarez-Enriquez ◽  
G.I. Olivas ◽  
E. Ortega-Rivas ◽  
P.B. Zamudio-Flores ◽  
S. Perez-Vega ◽  
...  
Foods ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 5
Author(s):  
Paola Littardi ◽  
Massimiliano Rinaldi ◽  
Maria Grimaldi ◽  
Antonella Cavazza ◽  
Emma Chiavaro

Green coffee parchment (GCP) is becoming interesting, due to the diffusion of wet processing in which coffee parchment is collected separately; it is one of the less studied coffee by-products, but it is reported to be rich in phenolic compounds and dietary fiber. The addition of GCP (355–500 μm) at 2 % to gluten-free breads was investigated in terms of physical properties (volume, moisture content, water activity, crumb grain, texture, and color), total antioxidant capacity (TAC) and total phenol content during three days of storage. Moreover, the effects of GCP on sensorial characteristics, 5-hydroxymethylfurfural (HMF), and oxidative stability was evaluated. From the sensorial analysis, bread with 2% addition resulted in being acceptable for consumers with no significant differences from the control, while 4% of GCP was discarded by consumers, as it resulted in being too bitter. Moreover, GCP at 2% addition did not modify volume, moisture content, and water activity. On the contrary, GCP deeply affected the color with a darker aspect that was appreciated by consumers. Regarding texture, 2% of GCP did not affect hardness, cohesiveness, and staling process during storage. Interestingly, 2% of GCP significantly improved the TAC and oxidative stability of the bread; in accordance with these results, 2% of GCP reduced the HMF content, thanks to its antioxidant compounds.


2018 ◽  
Vol 266 ◽  
pp. 158-166 ◽  
Author(s):  
Eugenia Cendoya ◽  
María del Pilar Monge ◽  
Stella Maris Chiacchiera ◽  
María Cecilia Farnochi ◽  
María Laura Ramirez

2016 ◽  
Vol 15 (2) ◽  
pp. 353-370 ◽  
Author(s):  
Roopesh M. Syamaladevi ◽  
Juming Tang ◽  
Rossana Villa-Rojas ◽  
Shyam Sablani ◽  
Brady Carter ◽  
...  

2021 ◽  
Vol 64 (4) ◽  
pp. 1373-1379
Author(s):  
Samir Trabelsi

HighlightsMoisture and water activity were determined nondestructively and in real time from measurement of dielectric properties.Moisture and water activity calibration equations were established in terms of the dielectric properties.Situations in which bulk density was known or unknown were considered.SEC ranged from 0.41% to 0.68% for moisture and from 0.02 to 0.04 for water activity.Abstract. A method for rapid and nondestructive determination of moisture content and water activity of granular and particulate materials was developed. The method relies on measurement of the dielectric constant and dielectric loss factor at a single microwave frequency. For the purpose of illustration, the method was applied to predicting the moisture content and water activity of almond kernels. A free-space transmission technique was used for accurate measurement of the dielectric properties. Samples of Bute Padre almond kernels with moisture content ranging from 4.8% to 16.5%, wet basis (w.b.), and water activity ranging from 0.50 to 0.93 were loaded into a Styrofoam sample holder and placed between two horn-lens antennas connected to a vector network analyzer. The dielectric properties were calculated from measurement of the attenuation and phase shift at 8 GHz and 25°C. The dielectric properties increased linearly with moisture content, while they showed an exponential increase with water activity. Situations in which the bulk density was known and unknown were considered. Linear and exponential growth regressions provided equations correlating the dielectric properties with moisture content and water activity with coefficients of determination (r2) higher than 0.96. Analytical expressions of moisture content and water activity in terms of the dielectric properties measured at 8 GHz and 25°C are provided. The standard error of calibration (SEC) was calculated for each calibration equation. Results show that moisture content can be predicted with SECs ranging from 0.41% to 0.68% (w.b.) and water activity with SECs ranging from 0.02 to 0.04 for almond kernel samples with water activity ranging from 0.5 to 0.9 and moisture contents ranging from 4.8% to 16.5% (w.b.). Keywords: Bulk density, Dielectric constant, Dielectric loss factor, Free-space measurements, Loss tangent, Microwave frequencies, Moisture content, Water activity.


Author(s):  
MILTON CANO-CHAUCA ◽  
AFONSO M. RAMOS ◽  
PAULO C. STRINGHETA ◽  
JOSÉ ANTONIO MARQUES ◽  
POLLYANNA IBRAHIM SILVA

Curvas de secagem de banana passa foram determinadas, utilizando-se três temperaturas do ar de secagem. Os resultados indicaram que para reduzir o teor de umidade do produto até 23,5% foram necessários tempos de secagem de 51, 36 e 30 horas paras as temperaturas de 50, 60 e 70ºC, respectivamente. O modelo exponencial U/Uo = exp(-kt) foi ajustado para os dados experimentais mediante análise de regressão não-linear, encontrandose alto coeficiente de regressão linear. Determinou-se a atividade de água do produto ao longo do processo de secagem para as três temperaturas testadas. Estudou-se a correlação entre a atividade de água e o teor de umidade do produto, determinando-se as isotermas de dessorção da banana passa a 25ºC. Observou-se que a atividade de água diminuiu em função do tempo de secagem e do teor de umidade para as três temperaturas de secagem. Os dados experimentais foram ajustados mediante regressão não-linear ao modelo polinomial e a seguinte equação foi obtida: U = -1844,93 + 7293,53Aa – 9515,52Aa2 + 4157,196Aa3. O ajuste mostrou-se satisfatório (R2 > 0,90). DRYING CURVES AND WATER ACTIVITY EVALUATION OF THE BANANA-PASSES Abstract Banana drying curves were determined by utilizing three drying air temperatures. The results indicated that to reduce the moisture content of the product until 23.5% it were necessary drying times of 51, 36 and 30 hours for temperatures of 50, 60 and 70ºC, respectively. The exponential model U/Uo = exp(-kt) was adjusted for the experimental data by means of non linear regression analysis, and a high coefficient of linear regression was found. The water activity of the product was determined throughout the drying process for the three tested temperatures. The correlation between the water activity and moisture content of the product was studied, and the sorption isotherms were determined at 25º C. It was observed that the water activity decreased in function to the drying time and moisture content for the three drying temperatures. The experimental data were adjusted by means of non linear regression to the polynomial model and the following equation was obtained: U = - 1844.93 + 7293.53A a – 9515.52 Aa 2 + 4157.196A a 3. The final adjust was satisfactory (R2 > 0.90).


2017 ◽  
Vol 6 (4) ◽  
pp. 96 ◽  
Author(s):  
Hidetaka Noritomi ◽  
Jumpei Nishigami ◽  
Nobuyuki Endo ◽  
Satoru Kato ◽  
Katsumi Uchiyama

We have found that the organic solvent-resistance of Alpha-chymotrypsin (Alpha-CT) is enhanced by adsorbing Alpha-CT onto bamboo charcoal powder (BCP), which is obtained by pyrolyzing bamboo waste under nitrogen atmosphere, and is markedly dependent on the thermodynamic water activity (aw) in organic solvents. When BCP-adsorbed Alpha-CT was immersed in acetonitrile at an appropriate water activity, it effectively enhanced the transesterification of N-acetyl-L-tyrosine ethyl ester (N-Ac-Tyr-OEt) with n-butanol (BuOH) to produce N-acetyl-L-tyrosine butyl ester (N-Ac-Tyr-OBu), compared to the hydrolysis of N-Ac-Tyr-OEt with water to give N-acetyl-L-tyrosine (N-Ac-Tyr-OH). When the water activity was 0.28, the initial rate of transesterification catalyzed by BCP-adsorbed Alpha-CT was about sixty times greater than that catalyzed by free Alpha-CT. Regarding the reaction selectivity which is defined as a ratio of the initial rate of transesterification to that of hydrolysis, BCP-adsorbed α-CT was much superior to free Alpha-CT. The catalytic activity of BCP-adsorbed Alpha-CT was markedly dependent on the reaction temperature. Furthermore, concerning the thermal stability at 50 oC, the half-life of BCP-adsorbed Alpha-CT exhibited 3.8-fold, compared to that of free Alpha-CT.


Author(s):  
Fernando M. Botelho ◽  
Nilso J. Boschiroli Neto ◽  
Silvia de C. C. Botelho ◽  
Gabriel H. H. de Oliveira ◽  
Michele R. Hauth

ABSTRACT Knowledge of the water sorption phenomenon in Brazil nut seeds will allow proper handling of this product, especially with regard to adequate conditions for safe storage. Thus, the present study aimed to determine the sorption isotherms (desorption and adsorption) of Brazil nuts, fitting different mathematical models to the experimental data, as well as to examine the hysteresis effect. To obtain the sorption isotherms, the static method was employed at temperatures of 25, 35, 45 and 55 °C and air relative humidities varying from 10 to 80%. The psychrometric conditions of the air were acquired with the aid of acid solutions and specific saturated saline left inside desiccators with the samples. It was verified that for a given isotherm, the equilibrium moisture content of Brazil nuts increases with water activity increment. In addition, at a constant water activity, equilibrium moisture content decreases with temperature increase. The Copace, Henderson and Oswin are the models that best describe the hygroscopicity of the Brazil nut seed for both the adsorption and desorption processes. Hysteresis was more pronounced at lower temperatures and higher values of water activity. The moisture content value for storage at temperatures less than 55 °C, without the risk of fungal development, must be lower than 8.2% (d.b.).


Sign in / Sign up

Export Citation Format

Share Document