Colour, fatty acids, bioactive compounds, and total antioxidant capacity in commercial cocoa beans (Theobroma cacao L.)

LWT ◽  
2021 ◽  
pp. 111629
Author(s):  
Fernando Ramos-Escudero ◽  
Sandra Casimiro-Gonzales ◽  
África Fernández-Prior ◽  
Keidy Cancino Chávez ◽  
José Gómez-Mendoza ◽  
...  
2020 ◽  
Vol 20 (5) ◽  
pp. 728-735 ◽  
Author(s):  
Laura E. Gutiérrez-Pliego ◽  
Beatriz E. Martínez-Carrillo ◽  
Aldo A. Reséndiz-Albor ◽  
Roxana Valdés-Ramos

Background: Type 2 Diabetes Mellitus (T2DM) is considered a chronic noncommunicable disease in which oxidative stress is expected as a result of hyperglycaemia. One of the most recent approaches is the study of microalgae fatty acids and their possible antioxidant effect. Objective: This study aimed to analyse the effect of supplementation with n-3 fatty acids extracted from microalgae on the total antioxidant capacity (TAC) and lipid peroxidation of adipose tissue and plasma from diabetic (db/db) and healthy (CD1) mice. Methods: Mice were supplemented with lyophilized n-3 fatty acids extracted from microalgae or added to the diet, from week 8 to 16. TAC assay and Thiobarbituric Acid Reactive Substances assay (TBARS) were performed on adipose tissue and plasma samples. Results: The supplementation of lyophilized n-3 fatty acids from microalgae increased the total antioxidant capacity in adipose tissue of diabetic mice (615.67μM Trolox equivalents vs 405.02μM Trolox equivalents from control mice, p<0.01) and in the plasma of healthy mice (1132.97±85.75μM Trolox equivalents vs 930.64±32μM Trolox equivalents from modified diet mice, p<0.01). There was no significant effect on lipid peroxidation on both strains. Conclusions:: The use of n-3 fatty acids extracted from microalgae could be a useful strategy to improve total antioxidant capacity in T2DM.


Foods ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 250 ◽  
Author(s):  
Beatriz de la Fuente ◽  
Gabriel López-García ◽  
Vicent Mañez ◽  
Amparo Alegría ◽  
Reyes Barberá ◽  
...  

Microgreens constitute an emerging class of fresh, healthy foods due to their nutritional composition. In this study the content of minerals and antioxidant bioactive compounds, and for the first time bioaccessibility, were evaluated in broccoli (Brassica oleracea L. var. italica Plenck), green curly kale (Brassica oleracea var. sabellica L.), red mustard (Brassica juncea (L.) Czern.) and radish (Raphanus sativus L.) hydroponic microgreens. Macro- (K, Ca, Mg) and oligo-elements (Fe, Zn), ascorbic acid, total soluble polyphenols, total carotenoids, total anthocyanins, total isothiocyanates and total antioxidant capacity (Trolox Equivalent Antioxidant Capacity and Oxygen Radical Absorbance Capacity) were determined before and after the standardized simulated gastrointestinal digestion process. All microgreens provided relevant amounts of vitamin C (31–56 mg/100 g fresh weight) and total carotenoids (162–224 mg β-carotene/100 g dry weight). Mineral content was comparable to that normally found in hydroponic microgreens and the low potassium levels observed would allow their dietetic recommendation for patients with impaired kidney function. Both total soluble polyphenols and total isothiocyanates were the greatest contributors to the total antioxidant capacity after digestion (43–70% and 31–63% bioaccessibility, respectively) while macroelements showed an important bioaccessibility (34–90%). In general, radish and mustard presented the highest bioaccessibility of bioactive compounds and minerals. Overall, the four hydroponic Brassicaceae microgreens present a wide array of antioxidant bioactive compounds.


10.5219/1025 ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 94-99
Author(s):  
Soňa Škrovánková ◽  
Lukáš Snopek ◽  
Jiří Mlček ◽  
Eva Volaříková

Honey contains important bioactive compounds (enzymes, phenolic compounds, vitamins, and minerals) with several positive health effects for humans. In the study six types of honey (acacia, rape, floral, multi flower, forest, and honeydew honeys), of Czech and Slovak origin, were evaluated for bioactive compounds by means of color, polyphenols and antioxidant capacity analyses. The brightest color of honeys, the lowest values measured spectometrically, had acacia and rape honeys, followed by floral, and darker multi flower and forest honeys, and honeydew honeys. Polyphenols (PP) amount, determined by spectrophotometric method with Folin-Ciocalteu reagent, was highest for the darkest honeydew honeys, followed by multi flower and forest honey, brighter floral honeys, and rape and acacia honey. Honeys polyphenols were in the range from 54.0 to 254.2 mg GAE.100g-1. The total antioxidant capacity (TAC) was analyzed by spectrometric methods with ABTS and DPPH reagents. Antioxidant capacity values are in agreement with the PP contents order. They were highest also for honeydew honeys (59.2 - 89.6 and 73.1 - 118.7 mg TE.100g-1), followed by multi flower (66.0 and 56.7 mg TE.100g-1) and forest honey (56.0 and 49.1 mg TE.100g-1), then floral honeys (33.0 - 49.2 and 27.8 - 38.7 mg TE.100g-1) and the lowest values for rape (19.0 and 28.1 mg TE.100g-1) and acacia (15.5 and 11.3 mg TE.100g-1) honey. A positive correlation between color, PP amount and TAC was evaluated for analyzed honeys. Darker honey samples showed higher values of phenolic compounds and antioxidant potential, therefore they belong to the honey types with higher amount of bioactive compounds such as antioxidants. 


Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1821
Author(s):  
Alica Bobková ◽  
Alžbeta Demianová ◽  
Ľubomír Belej ◽  
Ľuboš Harangozo ◽  
Marek Bobko ◽  
...  

Tea (Camellia sinensis) is widely sought for beverages worldwide. Heavy metals are often the main aims of the survey of teas, given that the use of agricultural fertilization is very frequent. Some of these may affect the content of bioactive compounds. Therefore, in this study, we analyzed fermented and non-fermented teas of a single plant origin from Japan, Nepal, Korea, and China, and described mutual correlations and changes in the total antioxidant capacity (TAC), and the content of polyphenols (TPC), caffeine, and heavy metals in tea leaves, in relation to the origin and fermentation process. Using UV-VIS spectrophotometry and HPLC-DAD, we determined variations in bioactive compounds’ content in relation to the fermentation process and origin and observed negative correlations between TAC and TPC. Heavy metal content followed this order: Mn > Fe > Cu > Zn > Ni > Cr > Pb > Co > Cd > Hg. Given the homogenous content of these elements in relation to fermentation, this paper also describes the possibility of using heavy metals as determinants of geographical origin. Linear Discriminant Analysis showed an accuracy of 75% for Ni, Co, Cd, Hg, and Pb, explaining 95.19% of the variability between geographical regions.


Sign in / Sign up

Export Citation Format

Share Document