Male and female gonadal ageing: Its impact on health span and life span

Author(s):  
Mónica B. Frungieri ◽  
Ricardo S. Calandra ◽  
Andrzej Bartke ◽  
María E. Matzkin
Genetics ◽  
1992 ◽  
Vol 132 (1) ◽  
pp. 229-239
Author(s):  
K B Dear ◽  
M Salazar ◽  
A L Watson ◽  
R S Gelman ◽  
R Bronson ◽  
...  

Abstract Analysis of genetic interactions in the F2 of an intercross of (C57BL/6 x DBA/2) F1J revealed influences of genetic factors on life span. Females lived longer than males. Dilute brown females died sooner than females of other colors. H-2b/H-2b males died sooner than H-2b/H-2d or H-2d/H-2d males, except that among dilute brown males those of typeH-2b/H-2d died sooner. Cluster analysis suggested that male and female genotypes each fall into two groups, with female dilute brown mice having shorter lives than other females, and male H-2b/H-2b mice except dilute brown and dilute brown H-2b/H-2d mice having shorter lives than other males. The association of heterozygosity with life span was clearer in females than in males, yet the longest-lived female genotype was homozygous H-2d/H-2d, of dominant Black phenotype at the Brown locus of chromosome 4, and homozygous dd at the Dilute locus of chromosome 9. The shortest-lived females were dilute brown H-2b/H-2b. The longest-lived and shortest-lived male genotypes were dilute brown H-2d/H-2d and dilute brown H-2b/H-2d, respectively. Although histological findings at postmortem differed between the sexes, there was no association of particular disorders with other genetic markers. The importance of H-2 in males was confirmed, but the allelic effects were perturbed, possibly by the absence of Sendai infection in this experiment. Overall our studies suggest that genetic influences on life span involve interactions between loci, and allelic interactions may change with viral infections or other environmental factors.


1960 ◽  
Vol 198 (4) ◽  
pp. 784-786 ◽  
Author(s):  
John D. Bonnet ◽  
Alan L. Orvis ◽  
Albert B. Hagedorn ◽  
Charles A. Owen

Forty-two male and female mice, 8 weeks old, were given radioiron (Fe59) in doses of 0.006–0.1 µc, containing 0.013–0.17 µg of iron, by intraperitoneal or intravenous routes. Assays of the radioactivity of the whole body revealed an initial rapid loss of Fe59 (15–20%) lasting about 6 days. Thereafter the Fe59 left the mice at a steady rate of 0.39%/day (half-life 180 days). One 34-year-old normal man was given 10.6 µc of Fe59, containing 8.2 µg of iron, intravenously. Based on counts from the entire body, the biologic rate of loss of the Fe59 was about 0.14%/day (half-life 500 days), and there was little or no initial loss such as occurred in the mouse. The Fe59 in the circulating erythrocytes was essentially unchanged for the first 3 months. It then fell to a new level of about 90% of the previous one; the mid-point of the fall was about 120 days after the administration of the radioiron. The difference in the rates of loss of radioiron from mice and man seems to be related primarily to the life span of the circulating red cells.


2019 ◽  
Vol 317 (5) ◽  
pp. C953-C963 ◽  
Author(s):  
Fengling Yuan ◽  
Jiejun Zhou ◽  
Lingxiu Xu ◽  
Wenxin Jia ◽  
Lei Chun ◽  
...  

GABA, a prominent inhibitory neurotransmitter, is best known to regulate neuronal functions in the nervous system. However, much less is known about the role of GABA signaling in other physiological processes. Interestingly, recent work showed that GABA signaling can regulate life span via a metabotropic GABAB receptor in Caenorhabditis elegans. However, the role of other types of GABA receptors in life span has not been clearly defined. It is also unclear whether GABA signaling regulates health span. Here, using C. elegans as a model, we systematically interrogated the role of various GABA receptors in both life span and health span. We find that mutations in four different GABA receptors extend health span by promoting resistance to stress and pathogen infection and that two such receptor mutants also show extended life span. Different GABA receptors engage distinct transcriptional factors to regulate life span and health span, and even the same receptor regulates life span and health span via different transcription factors. Our results uncover a novel, profound role of GABA signaling in aging in C. elegans, which is mediated by different GABA receptors coupled to distinct downstream effectors.


Author(s):  
Joshua D. Brycki ◽  
Jeremy R. Chen See ◽  
Gillian R. Letson ◽  
Cade S. Emlet ◽  
Lavinia V. Unverdorben ◽  
...  

Previous research has reported effects of the microbiome on health span and life span of Caenorhabditis elegans , including interactions with evolutionarily conserved pathways in humans. We build on this literature by reporting the gene expression of Escherichia coli OP50 in wild-type (N2) and three long-lived mutants of C. elegans .


2013 ◽  
Vol 33 (1) ◽  
pp. 133-170 ◽  
Author(s):  
Bradley J. Willcox ◽  
Makoto Suzuki ◽  
Timothy A. Donlon ◽  
Qimei He ◽  
John S. Grove ◽  
...  
Keyword(s):  

2007 ◽  
Vol 32 (5) ◽  
pp. 954-966 ◽  
Author(s):  
Christy S. Carter ◽  
Tim Hofer ◽  
Arnold Y. Seo ◽  
Christian Leeuwenburgh

The aging process results in a gradual and progressive structural deterioration of biomolecular and cellular compartments and is associated with many pathological conditions, including cardiovascular disease, stroke, Alzheimer’s disease, osteoporosis, sarcopenia, and liver dysfunction. Concomitantly, each of these conditions is associated with progressive functional decline, loss of independence, and ultimately disability. Because disabled individuals require care in outpatient or home care settings, and in light of the social, emotional, and fiscal burden associated with caring for an ever-increasing elderly population, research in geriatric medicine has recently focused on the biological mechanisms that are involved in the progression towards functional decline and disability to better design treatment and intervention strategies. Although not completely understood, the mechanisms underlying the aging process may partly involve inflammatory processes, oxidative damage, mitochondrial dysfunction, and apoptotic tissue degeneration. These hypotheses are based on epidemiological evidence and data from animal models of aging, as well as interventional studies. Findings from these studies have identified possible strategies to decrease the incidence of age-related diseases and delay the aging process. For example, lifelong exercise is known to extend mean life-span, whereas calorie restriction (CR) increases both mean and maximum life-span in a variety of species. Optimal application of these intervention strategies in the elderly may positively affect health-related outcomes and possibly longevity. Therefore, the scope of this article is to (i) provide an interpretation of various theories of aging from a “health-span” perspective; (ii) describe interventional testing in animals (CR and exercise); and (iii) provide a translational interpretation of these data.


Author(s):  
Antero Salminen ◽  
Anu Kauppinen ◽  
Kai Kaarniranta
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document