A modified BET equation to investigate supercritical methane adsorption mechanisms in shale

2019 ◽  
Vol 105 ◽  
pp. 284-292 ◽  
Author(s):  
Shangwen Zhou ◽  
Dongxiao Zhang ◽  
Hongyan Wang ◽  
Xiaohan Li
2002 ◽  
Vol 2 (5-6) ◽  
pp. 217-224 ◽  
Author(s):  
Z. Reddad ◽  
C. Gérente ◽  
Y. Andrès ◽  
P. Le Cloirec

In the present work, sugar beet pulp, a common waste from the sugar refining industry, was studied in the removal of metal ions from aqueous solutions. The ability of this cheap biopolymer to sorb several metals namely Pb2+, Cu2+, Zn2+, Cd2+ and Ni2+ in aqueous solutions was investigated. The metal fixation capacities of the sorbent were determined according to operating conditions and the fixation mechanisms were identified. The biopolymer has shown high elimination rates and interesting metal fixation capacities. A pseudo-second-order kinetic model was tested to investigate the adsorption mechanisms. The kinetic parameters of the model were calculated and discussed. For 8 × 10-4 M initial metal concentration, the initial sorption rates (v0) ranged from 0.063 mmol.g-1.min-1 for Pb2+ to 0.275 mmol.g-1.min-1 for Ni2+ ions, with the order: Ni2+ > Cd2+ > Zn2+ > Cu2+ > Pb2+. The equilibrium data fitted well with the Langmuir model and showed the following affinity order of the material: Pb2+ > Cu2+ > Zn2+ > Cd2+ > Ni2+. Then, the kinetic and equilibrium parameters calculated qm and v0 were tentatively correlated to the properties of the metals. Finally, equilibrium experiments in multimetallic systems were performed to study the competition of the fixation of Pb2+, Zn2+ and Ni2+ cations. In all cases, the metal fixation onto the biopolymer was found to be favourable in multicomponent systems. Based on these results, it is demonstrated that this biosorbent represents a low-cost solution for the treatment of metal-polluted wastewaters.


Author(s):  
Vladimir V. Turov ◽  
Vladimir M. Gun’ko ◽  
Tetyana V. Krupska ◽  
Mykola V. Borysenko ◽  
Magdalina D. Tsapko ◽  
...  
Keyword(s):  

2021 ◽  
Vol 13 (15) ◽  
pp. 8552
Author(s):  
Vahid Alimohammadi ◽  
Mehdi Maghfouri ◽  
Delaram Nourmohammadi ◽  
Pejman Azarsa ◽  
Rishi Gupta ◽  
...  

Clean water is a vital need for all living creatures during their lifespan. However, contaminated stormwater is a major issue around the globe. A wide range of contaminants, including heavy metals, organic and inorganic impurities, has been discovered in stormwater. Some commonly utilized methods, such as biological, physical and chemical procedures, have been considered to overcome these issues. However, these current approaches result in moderate to low contaminant removal efficiencies for certain classes of contaminants. Of late, filtration and adsorption processes have become more featured in permeable concretes (PCs) for the treatment of stormwater. As nanoparticles have vast potential and unique characterizations, such as a higher surface area to cure polluted stormwater, employing them to improve permeable concretes’ capabilities in stormwater treatment systems is an effective way to increase filtration and adsorption mechanisms. The present study reviews the removal rate of different stormwater contaminants such as heavy metals, organic and other pollutants using nanoparticle-improved PC. The application of different kinds of nanomaterials in PC as porous media to investigate their influences on the properties of PC, including the permeability rate, compressive strength, adsorption capacity and mix design of such concrete, was also studied. The findings of this review show that different types of nanomaterials improve the removal efficiency, compressive strength and adsorption capacity and decrease the infiltration rate of PC during the stormwater treatment process. With regard to the lack of comprehensive investigation concerning the use of nanomaterials in PC to treat polluted stormwater runoff, this study reviews 242 published articles on the removal rate of different stormwater contaminants by using PC improved with nanoparticles.


2021 ◽  
Author(s):  
Chaoyue Xie ◽  
Yunlan Sun ◽  
Baozhong Zhu ◽  
Weiyi Song ◽  
Minggao Xu

Activated carbon-supported iron-based catalysts (FexOy/AC) show excellent deNOx efficiency. However, the specific adsorption mechanisms of NH3, NO, and O2 molecules on their surfaces are still unknown. In this study, the...


Author(s):  
Shangbin Chen ◽  
Chu Zhang ◽  
Xueyuan Li ◽  
Yingkun Zhang ◽  
Xiaoqi Wang

AbstractIn shale reservoirs, the organic pores with various structures formed during the thermal evolution of organic matter are the main storage site for adsorbed methane. However, in the process of thermal evolution, the adsorption characteristics of methane in multi type and multi-scale organic matter pores have not been sufficiently studied. In this study, the molecular simulation method was used to study the adsorption characteristics of methane based on the geological conditions of Longmaxi Formation shale reservoir in Sichuan Basin, China. The results show that the characteristics of pore structure will affect the methane adsorption characteristics. The adsorption capacity of slit-pores for methane is much higher than that of cylindrical pores. The groove space inside the pore will change the density distribution of methane molecules in the pore, greatly improve the adsorption capacity of the pore, and increase the pressure sensitivity of the adsorption process. Although the variation of methane adsorption characteristics of different shapes is not consistent with pore size, all pores have the strongest methane adsorption capacity when the pore size is about 2 nm. In addition, the changes of temperature and pressure during the thermal evolution are also important factors to control the methane adsorption characteristics. The pore adsorption capacity first increases and then decreases with the increase of pressure, and increases with the increase of temperature. In the early stage of thermal evolution, pore adsorption capacity is strong and pressure sensitivity is weak; while in the late stage, it is on the contrary.


Sign in / Sign up

Export Citation Format

Share Document