Surface modification and chemical sensitivity of sol gel deposited nanocrystalline ZnO films

2018 ◽  
Vol 209 ◽  
pp. 165-171 ◽  
Author(s):  
Diana Nesheva ◽  
Valeri Dzhurkov ◽  
Irina Stambolova ◽  
Vladimir Blaskov ◽  
Irina Bineva ◽  
...  
2008 ◽  
Vol 1091 ◽  
Author(s):  
Cary Allen ◽  
Darick J. Baker ◽  
Thomas E. Furtak ◽  
Reuben T. Collins ◽  
Matthew S. White ◽  
...  

AbstractZinc Oxide (ZnO) is actively investigated for hybrid organic inorganic device applications. The interface greatly influences the electronic properties of these devices. Molecular surface modification of ZnO is being investigated for its potential to control the alignment of energy levels, charge transfer, as well as, interfacial chemical characteristics that influence device fabrication. In this study, octadecyltriethoxysilane (OTES) treatments of thin film ZnO produced by sol-gel decomposition were explored. The ZnO films were hydroxylated and then modified using OTES in solution. The condensation reaction of the OTES at the surface was promoted by the addition of a protoamine catalyst. Contact angle and infrared spectroscopy studies confirmed the surface modification and indicated that the coverage of the OTES was submonolayer. The modified ZnO films were reproducible and stable for long periods. The effects of the modification on subsequently spin-cast poly[3-hexylthiophene](P3HT) and on hybrid ZnO/P3HT organic solar cell performance are discussed.


2015 ◽  
Vol 226 ◽  
pp. 224-230 ◽  
Author(s):  
P. Małecki ◽  
K. Kolman ◽  
J. Pigłowski ◽  
J. Kaleta ◽  
J. Krzak

2006 ◽  
Vol 20 (23) ◽  
pp. 3357-3364 ◽  
Author(s):  
TALAAT MOUSSA HAMMAD

Multilayer transparent conducting zinc oxide films have been prepared on boro-silicate substrates by the commercially sol gel dip coating process. Each layer was fired at 550°C in a conventional furnace for 15 min. The final coatings were then tempered under a flux of forming gas ( N 2/ H 2) at 400°C for 2 h. The coatings were characterized by surface stylus profiling and optical spectroscopy (UV-NIR). Results show that (1) ZnO films with electrical resistivity of 6×10-4 Ω· cm , free carrier mobility of approximately 77 cm 2/ V · s and free carrier density of approximately 6.14×1019 cm -3 are obtained for multilayers 310 nm and (2) the transmittance is approximately 60.4% and the reflectance is nearly 34.7% are obtained at a wavelength of 800 nm when the thickness of the ZnO multilayers is 310 nm. The crystal structure and grain orientation of ZnO films were determined by X-ray diffraction. SEM investigations revealed that the surface morphology of growing ZnO films on boro-silicate substrate is dominated by the smooth surface with a fine microstructure.


2019 ◽  
Vol 22 (5) ◽  
pp. 393-405 ◽  
Author(s):  
Hamid Kazemi Hakki ◽  
Somaiyeh Allahyari ◽  
Nader Rahemi ◽  
Minoo Tasbihi

2016 ◽  
Vol 680 ◽  
pp. 124-128 ◽  
Author(s):  
Chao Du ◽  
Yu Chun Zou ◽  
Zhi Qing Chen ◽  
Wen Kui Li ◽  
Shan Shan Luo

ZnO thin films have attractive applications in photoelectric device, due to their excellent chemical, electrical and optical properties. In this paper, ZnO thin films with good c-axis preferred orientation and high transmittance are prepared on glass sheets by sol-gel immerse technique. The effects of withdrawal speeds on the growth process of thin film crystal, film crystal orientation and the crystallinity, the optical performance were investigated by XRD, SEM and UV-Vis spectrophotometry. The results show that the thin films were composed of better hexagonal wurtzite crystals with the c-axis prepared orientation. The transmittance of prepared thin films is over 80% in the visible-near IR region from 600 nm - 800 nm. ZnO films have sharp and narrow diffraction peaks, which indicates that the materials exhibit high crystallinity. With the withdrawal speeds increasing, the grain size of ZnO thin films and the intensity for all diffraction peaks were increased gradually. The growth model is changed from the stratified structure into the island structure in the growth process. The transmittance of the thin films decrease in the visible wavelength region, with the withdrawal speeds increasing.


2014 ◽  
Vol 2 (24) ◽  
pp. 9361-9370 ◽  
Author(s):  
Jo-Lin Lan ◽  
Sheng-Jye Cherng ◽  
Yi-Hsun Yang ◽  
Qifeng Zhang ◽  
Selvam Subramaniyan ◽  
...  

Ta2O5–ZnO composite films with varied composition were fabricated by sol–gel processing and applied as cathodic buffer layers (CBLs) for inverted polymer solar cells, and demonstrated enhanced power conversion efficiency with excellent stability.


2020 ◽  
Vol 978 ◽  
pp. 384-389
Author(s):  
Sritama Roy ◽  
Saswati Soumya Dash ◽  
Prasanna Kumar Sahu ◽  
Smita Mishra ◽  
Jyoti Prakash Kar

Zinc Oxide (ZnO) thin films were produced by the sol gel dip coating process on the p-type silicon substrate with various withdrawal speeds changing from 1 to 4 cm/min, respectively. The films were annealed at a temperature of 500 °C for an hour in air ambient. The thin film thickness was found to be raised with the rise in withdrawal speed. The uniform distribution of the grains was appeared for all the films. The evolution of c-axis oriented (002) peak was revealed from X-ray diffraction (XRD) studies. The microstructural and optical properties of ZnO films were investigated by Raman, FTIR and photoluminescence spectroscopy (PL). The resistive switching properties of ZnO based memristors were studied by performing the current-voltage (I-V) measurements, where the thin films coated with lower withdrawal speed, have shown better switching property with rapid rise and fall of current during SET and RESET process, respectively.


2020 ◽  
Vol 22 (4) ◽  
pp. 2010-2018 ◽  
Author(s):  
Muhammad Abiyyu Kenichi Purbayanto ◽  
Andrivo Rusydi ◽  
Yudi Darma

The crystallinity of starting materials has a vital role in determining the structure modification and optical properties of ZnO films after H2 annealing.


Sign in / Sign up

Export Citation Format

Share Document