Mechanical properties of natural hydroxyapatite using low cold compaction pressure: Effect of sintering temperature

2020 ◽  
Vol 239 ◽  
pp. 122099 ◽  
Author(s):  
D.O. Obada ◽  
E.T. Dauda ◽  
J.K. Abifarin ◽  
D. Dodoo-Arhin ◽  
N.D. Bansod
2021 ◽  
Author(s):  
Johnson Kehinde Abifarin

Abstract Our previous study have reported synthesis and mechanical properties of natural hydroxyapatite (HA), but optimization of the measured hardness and compressive strength has not been examined. This paper presents optimization of mechanical characteristics (hardness and compressive strength), using Taguchi-grey relational analysis design. In the design, three factors with mixed levels (2 and 3) is employed with the consideration of sintering parameters (0 and 500 Pa compaction pressure, and 900, 1000 and 1100 oC sintering temperature), reported in the previous study. The orthogonal array L18 having 18 rows corresponding to the number of tests and the required columns was selected. Results obtained shows that HA with good hardness and compressive strength is feasible with less or no compaction pressure sintering parameter. An optimum grey relational grade (GRG) of the synthesized HA is 0.7171 and has experimental value within 95% confidence interval.The optimal sintering parameters are gotten to be 500Pa compaction pressure and 1100 oC sintering temperature. Result shows that sintering temperature having 99.90 percentage of contribution is the most significant factor, while compaction pressure and error are insignificant on the overall hardness and compressive strength of the synthesized HA.


2021 ◽  
Vol 1 (2) ◽  
pp. 20-32
Author(s):  
Johnson Kehinde Abifarin ◽  
David Olubiyi Olubiyi ◽  
Emmanuel Toi Dauda ◽  
Elijah Oyewusi Oyedeji

Comparative study of kaolin reinforced hydroxyapatite (KHAp) and pure HAp using different production parameters has been done through traditional experimentation. However, the quantitative effect, optimization of kaolin reinforcement and fabrication parameters have not been investigated. Hence, this study examines the effect of kaolin reinforcement, compaction pressure and sintering temperature on the experimental mechanical properties of HAp. Taguchi design assisted by grey relational analysis was employed with L36 (2**2 3**1) orthogonal array. The Minitab 16 software was used to analyze the Taguchi design. The result showed a disparity in kaolin reinforcement as the optimum condition for individual mechanical properties, but the grey relational analysis showed better mechanical properties with kaolin reinforcement, 500 Pa compaction pressure and 1100 oC sintering temperature. The obtained result further revealed kaolin reinforcement as a strong and promising reinforcing material for high strength clinical application, having a contribution of 93.16% on compressive strength of HAp.  Therefore, future studies can be conducted in the use of different wt% of kaolin on the multi-response mechanical characteristics of HAp.  


Mechanical Property of Nickel-Chromium composite investigated with different parameters. Green pallets (composite) were manufactured under the different pressure (220MPa, 275MPa and 330MPa) and such pallet sintering in two different temperatures (9000C and 10000C). The result indicate that the properties of the composite increases with increasing pressure and also with increasing sintering temperature for Ni-Cr based composite. Porosity plays a vital role in mechanical properties of composite and it present between maximum 4.304% to minimum 1.865%. For highly porous material, mechanical properties are minimum than lower porous composite material. The result of the study reveals that the properties of Ni-Cr based composite improved for 330MPa pressure and 1000oC temperature. Thus there is need to consider these aspect while manufacturing the composite material to have a good mechanical or Tribological properties.


2021 ◽  
Vol 3 (10) ◽  
Author(s):  
Obinna Anayo Osuchukwu ◽  
Abdu Salihi ◽  
Ibrahim Abdullahi ◽  
Bello Abdulkareem ◽  
Chinedu Sixtus Nwannenna

AbstractHydroxyapatite (HAp) with good mechanical properties is a promising material meant for a number of useful bids in dentistry and orthopedic for biomedical engineering applications for drug delivery, bone defect fillers, bone cements, etc. In this paper, a comprehensive review has been done, by reviewing different literatures related to synthesis techniques, mechanical properties and property testing, method of calcination and characterization of hydroxyapatite which are product of catfish and bovine bones. The discussion is in relations of the obligatory features vital to attain the best properties for the envisioned bid of bone graft. The process approaches that are capable of fabricating the essential microstructure and the ways to advance the mechanical properties of natural mined HAp are reviewed. The standard values for tensile strength were found to be within the range of 40–300 MPa, compressive strength was 400–900 MPa, while Elastic modulus was 80–120 GPa and fracture toughness was 0.6–1 MPa m1/2 (Ramesh et al. in Ceram Int 44(9):10525–10530, 2018; Landi et al. in J Eur Ceram Soc 20(14–15):2377–2387, 2000; Munar et al. in Dent Mater J 25(1):51–58, 2006). Also, the porosity range was 70–85% (Yang et al. in Am Ceram Soc Bull 89(2):24–32, 2010), density is 3.16 g/cm3 and relative density is 95–99.5% (Ramesh et al. 2018; Landi et al. 2000; Munar et al. 2006). The literature revealed that CaP ratio varies in relation to the source and sintering temperature. For example, for bovine bone, a CaP ratio of 1.7 (Mezahi et al. in J Therm Anal Calorim 95(1):21–29, 2009) and 1.65 (Barakat et al. in J Mater Process Technol 209(7):3408–3415, 2009) was obtained at 1100 °C and 750 °C respectively. Basic understanding on the effect of adding foreign material as a strengthening agent to the mechanical properties of HAp is ground factor for the development of new biomaterial (Natural hydroxyapatite, NHAp). Therefore, it is inferred that upon careful combination of main parameters such as compaction pressures, sintering temperatures, and sintering dwell times for production natural HAp (NHAp), mechanical properties can be enhanced. Graphic abstract


2019 ◽  
Vol 17 (2) ◽  
Author(s):  
Heru Sukanto

<p class="biasa">The powder size used in the research were maximum of 297mm and maximum of 105m resulted by water atomization. Both powder sizes were dry mixed by ratio of 65:35 %wt and was added by 1,25% wt of wax. Mixing was taking a place in steel cylinder with diameter of 2” roteted at 140 rpm for 2 hr. Green body was formed by pressing pressure of 280, 340, 400 and 435 Mpa. Sintering was conducted in argon and temperatures variation of 500, 550, 600 and 650<sup>o</sup>C for 2 hr.</p><p class="biasa">The results show thet sintering temperature change have no significant effects on density and mechanical properties while presing pressure have dominantly effects. Traverse rupture strength, density and hardness growth with  increasing pressing pressure but they will decrease with increasing sintering temperature. The best increasing of mechanical properties was occurred at temperature sintering of 500<sup>o</sup>C and compaction pressure of 400 Mpa.</p>


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 278
Author(s):  
Herman Tuminoh ◽  
Hendra Hermawan ◽  
Muhammad Hanif Ramlee

To prevent a premature failure, absorbable magnesium implants must possess an adequate mechanical stability. Among many ways to improve the mechanical properties of magnesium is by particle reinforcement, such as using carbon nanofiber (CNF). This work reports an experimental design for optimum materials and processing of CNF-reinforced Mg–Zn composites based on a two-level factorial design. Four factors were analyzed: percentage of CNF, compaction pressure, sintering temperature, and sintering time, for three recorded responses: elastic modulus, hardness, and weight loss. Based on the two-level factorial design, mechanical properties and degradation resistance of the composites reach its optimum at a composition of 2 wt % CNF, 400 MPa of compaction pressure, and 500 °C of sintering temperature. The analysis of variance reveals a significant effect of all variables (p < 0.0500) except for the sintering time (p > 0.0500). The elastic modulus and hardness reach their highest values at 4685 MPa and 60 Hv, respectively. The minimum and maximum weight loss after three days of immersion in PBS are recorded at 54% and 100%, respectively. This work concludes the percentage of CNF, compaction pressure, and sintering temperature as the main factors affecting the optimum elastic modulus, hardness, and degradation resistance of CNF-reinforced Mg–Zn composites.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 422
Author(s):  
Kuai Zhang ◽  
Yungang Li ◽  
Hongyan Yan ◽  
Chuang Wang ◽  
Hui Li ◽  
...  

An Fe/FeAl2O4 composite was prepared with Fe-Fe2O3-Al2O3 powder by a hot press sintering method. The mass ratio was 6:1:2, sintering pressure was 30 MPa, and holding time was 120 min. The raw materials for the powder particles were respectively 1 µm (Fe), 0.5 µm (Fe2O3), and 1 µm (Al2O3) in diameter. The effect of sintering temperature on the microstructure and mechanical properties of Fe/FeAl2O4 composite was studied. The results showed that Fe/FeAl2O4 composite was formed by in situ reaction at 1300 °C–1500 °C. With the increased sintering temperature, the microstructure and mechanical properties of the Fe/FeAl2O4 composite showed a change law that initially became better and then became worse. The best microstructure and optimal mechanical properties were obtained at 1400 °C. At this temperature, the grain size of Fe and FeAl2O4 phases in Fe/FeAl2O4 composite was uniform, the relative density was 96.7%, and the Vickers hardness and bending strength were 1.88 GPa and 280.0 MPa, respectively. The wettability between Fe and FeAl2O4 was enhanced with increased sintering temperature. And then the densification process was accelerated. Finally, the microstructure and mechanical properties of the Fe/FeAl2O4 composite were improved.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 218
Author(s):  
Xianjie Yuan ◽  
Xuanhui Qu ◽  
Haiqing Yin ◽  
Zaiqiang Feng ◽  
Mingqi Tang ◽  
...  

This present work investigates the effects of sintering temperature on densification, mechanical properties and microstructure of Al-based alloy pressed by high-velocity compaction. The green samples were heated under the flow of high pure (99.99 wt%) N2. The heating rate was 4 °C/min before 315 °C. For reducing the residual stress, the samples were isothermally held for one h. Then, the specimens were respectively heated at the rate of 10 °C/min to the temperature between 540 °C and 700 °C, held for one h, and then furnace-cooled to the room temperature. Results indicate that when the sintered temperature was 640 °C, both the sintered density and mechanical properties was optimum. Differential Scanning Calorimetry, X-ray diffraction of sintered samples, Scanning Electron Microscopy, Energy Dispersive Spectroscopy, and Transmission Electron Microscope were used to analyse the microstructure and phases.


Sign in / Sign up

Export Citation Format

Share Document