Structural variations in heat treated B-bearing stainless steel

2009 ◽  
Vol 30 (3) ◽  
pp. 885-891 ◽  
Author(s):  
Fu Han-guang ◽  
Li Zhen-hua ◽  
Lei Yong-ping ◽  
Jiang Zhi-qiang ◽  
Xing Jian-dong
2014 ◽  
Vol 698 ◽  
pp. 495-500 ◽  
Author(s):  
Iuliia N. Maliutina ◽  
Vyacheslav I. Mali ◽  
Ksenia A. Skorokhod ◽  
Anatoly A. Bataev

Analysis of structural variations taking place at the stainless steel (09Cr18Ni10Ti) - bronze (CuBe2Ni) interface obtained by explosive welding was conducted in the current work. The produced weld joint was post heat-treated in the temperature range from 500 to 800 °С. Microstructural characterizations were carried out using optical and scanning electron microscopy. The results of the analysis revealed the presence of 2 zones at the interface: mixing zone of bronze and stainless steel and a diffusion zone. The diffusion processes in the weld joint during heating were studied by the energy-dispersive analysis (EDX). EDX studies revealed that at 800 °С copper contained in bronze completely migrated from the diffusion layer to the mixing zone whereas iron concentration, on the contrary, increased in the diffusion layer. Voids appeared in the mixing zone of stainless steel and bronze due to the difference of diffusion coefficients of basic elements in the composite.


Alloy Digest ◽  
1997 ◽  
Vol 46 (1) ◽  

Abstract HPM 455 is a precipitation hardenable martensitic stainless steel. The composition provides a good combination of corrosion resistance and heat-treated strength favorable for fatigue applications. The material is well suited for demanding spring devices. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-666. Producer or source: Hamilton Precision Metals Inc.


2021 ◽  
Vol 28 (3) ◽  
pp. 440-449
Author(s):  
K. Bin Tayyab ◽  
A. Farooq ◽  
A. Ahmed Alvi ◽  
A. Basit Nadeem ◽  
K. M. Deen

2016 ◽  
Vol 23 (03) ◽  
pp. 1650013 ◽  
Author(s):  
MOHAMMED ASIF M. ◽  
KULKARNI ANUP SHRIKRISHNA ◽  
P. SATHIYA

The present study focuses on the metallurgical and corrosion characterization of post weld heat treated duplex stainless steel joints. After friction welding, it was confirmed that there is an increase in ferrite content at weld interface due to dynamic recrystallization. This caused the weldments prone to pitting corrosion attack. Hence the post weld heat treatments were performed at three temperatures 1080[Formula: see text]C, 1150[Formula: see text]C and 1200[Formula: see text]C with 15[Formula: see text]min of aging time. This was followed by water and oil quenching. The volume fraction of ferrite to austenite ratio was balanced and highest pit nucleation resistance were achieved after PWHT at 1080[Formula: see text]C followed by water quench and at 1150[Formula: see text]C followed by oil quench. This had happened exactly at parameter set containing heating pressure (HP):40 heating time (HT):4 upsetting pressure (UP):80 upsetting time (UP):2 (experiment no. 5). Dual phase presence and absence of precipitates were conformed through TEM which follow Kurdjumov–Sachs relationship. PREN of ferrite was decreasing with increase in temperature and that of austenite increased. The equilibrium temperature for water quenching was around 1100[Formula: see text]C and that for oil quenching was around 1140[Formula: see text]C. The pit depths were found to be in the range of 100[Formula: see text]nm and width of 1.5–2[Formula: see text][Formula: see text]m.


2013 ◽  
Vol 795 ◽  
pp. 492-495 ◽  
Author(s):  
Mohd Noor Mazlee ◽  
Alvin Tan Yin Zhen ◽  
Shamsul Baharin Jamaludin ◽  
Nur Farhana Hayazi ◽  
Shaiful Rizam Shamsudin

Tensile shear strength and ageing treatment of dissimilar 6063 aluminum alloy-316L stainless steel joint fabricated by spot welding were investigated. The results showed that tensile shear strength increased with the increasing of welding current. The enhancement of tensile shear strength of the joints was due to the enlargement of the nugget diameter. It was also found that the tensile shear strength values for heat treated joint almost similar to that of non-heat treated joint.


2000 ◽  
Vol 123 (1) ◽  
pp. 130-134
Author(s):  
Makoto Hayashi ◽  
Kunio Enomoto

Changes in the residual stress in a worked surface layer of type 304 austenitic stainless steel due to tensile deformation were measured by the X-ray diffraction residual stress measuring method. The compressive residual stresses introduced by end-mill, end-mill side cutter, and grinder were easily changed into tensile stresses when the plate specimens were subjected to tensile stress greater than the yield stress of the solid solution heat-treated material. The residual stresses after the tensile deformation depend on the initial residual stresses and the degree of preliminary working. The behavior of the residual stress changes can be interpreted if the surface-worked material is regarded as a composite made of solid solution heat-treated material and work-hardened material.


2018 ◽  
Vol 919 ◽  
pp. 84-91 ◽  
Author(s):  
Marek Pagáč ◽  
Jiří Hajnyš ◽  
Jana Petrů ◽  
Tomáš Zlámal

The paper deals with the comparison of surface hardness and porosity of stainless steel 316L (1.4404) produced by additive technology (SLM) and cold rolled steel. The subject of the paper is a comparison of two sets of samples where the first set of samples was made on a Renishaw AM400 with a laser output of 200 W and 400 W. In each set of samples, were the samples without heat-treated and heat-treated by annealing. Measurement of porosity and surface hardness were performed on all samples. The surface hardness of the material was evaluated by a static test according to Brinell CSN EN 10003-1. The porosity measurement was performed by the optical method. The measured values were compared with the reference material, which was cold-rolled steel, in which both the porosity and the hardness of the surface were measured.


Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1736 ◽  
Author(s):  
L.Y. Dai ◽  
G.Y. Niu ◽  
M.Z. Ma

In this paper, low-energy proton irradiation experiments with different cumulative fluences were performed on samples of AISI 420 stainless steel that were either annealed or tempered at 600 or 700 °C. The effects of the cumulative proton irradiation fluence on the evolution of the microstructure of AISI 420 were studied by transmission electron microscopy (TEM). Scratch tests were performed using a Tribo Indenter nanomechanical tester, in order to investigate the effects of the cumulative fluence on the tribological properties of the AISI 420 stainless steel. The results indicate that the dislocation density of the microstructure near the surface of the AISI 420 stainless steel increases with higher cumulative proton irradiation fluences. Under the same load, the nanoscale friction coefficient and wear rate both decreased with increasing cumulative proton irradiation fluence. This indicates that the surface hardening effect induced by proton irradiation can diminish the nanoscale friction coefficient and wear rate.


Sign in / Sign up

Export Citation Format

Share Document