scholarly journals Strengthening mechanism and anisotropy of mechanical properties of Si3N4p/Al-Mg-Si composites fabricated by sintering and extrusion

2021 ◽  
pp. 110111
Author(s):  
Zhigang Li ◽  
Liang Chen ◽  
Xianliang Zhang ◽  
Guoqun Zhao ◽  
Cunsheng Zhang
2021 ◽  
Vol 10 (1) ◽  
pp. 62-72
Author(s):  
Huanran Lin ◽  
Xiuhua Guo ◽  
Kexing Song ◽  
Jiang Feng ◽  
Shaolin Li ◽  
...  

Abstract Although Cu–Al2O3 composites have good comprehensive performance, higher mechanical properties and arc erosion resistance are still required to meet heavy-duty applications such as electromagnetic railguns. In this work, a novel hybrid SiCw/Cu–Al2O3 composite was successfully prepared by combining powder metallurgy and internal oxidation. The microstructure and mechanical behavior of the SiCw/Cu–Al2O3 composite were studied. The results show that nano-Al2O3 particles and micro-SiCw are introduced into the copper matrix simultaneously. Well-bonded interfaces between copper matrix and Al2O3 particles or SiCw are obtained with improved mechanical and arc erosion resistance of SiCw/Cu–Al2O3 composite. The ultimate tensile strength of the SiCw/Cu–Al2O3 composite is 508.9 MPa, which is 7.9 and 56.1% higher than that of the Cu–Al2O3 composite and SiCw/Cu composite, respectively. The strengthening mechanism calculation shows that Orowan strengthening is the main strengthening mechanism of the SiCw/Cu–Al2O3 composite. Compared with Cu–Al2O3 composite, the hybrid SiCw/Cu–Al2O3 composite has lower arc time and energy and better arc stability.


2020 ◽  
Vol 10 (3) ◽  
pp. 1159 ◽  
Author(s):  
Yingmei Xie ◽  
Hiroki Kurita ◽  
Ryugo Ishigami ◽  
Fumio Narita

Epoxy resins are a widely used common polymer due to their excellent mechanical properties. On the other hand, cellulose nanofiber (CNF) is one of the new generation of fibers, and recent test results show that CNF reinforced polymers have high mechanical properties. It has also been reported that an extremely low CNF addition increases the mechanical properties of the matrix resin. In this study, we prepared extremely-low CNF (~1 wt.%) reinforced epoxy resin matrix (epoxy-CNF) composites, and tried to understand the strengthening mechanism of the epoxy-CNF composite through the three-point flexural test, finite element analysis (FEA), and discussion based on organic chemistry. The flexural modulus and strength were significantly increased by the extremely low CNF addition (less than 0.2 wt.%), although the theories for short-fiber-reinforced composites cannot explain the strengthening mechanism of the epoxy-CNF composite. Hence, we propose the possibility that CNF behaves as an auxiliary agent to enhance the structure of the epoxy molecule, and not as a reinforcing fiber in the epoxy resin matrix.


2007 ◽  
Vol 558-559 ◽  
pp. 213-216 ◽  
Author(s):  
Y.G. Jeong ◽  
Woo Jin Kim ◽  
Seo Gou Choi ◽  
Ha Guk Jeong

For the Magnesium alloy AZ31, hot rolling is usually carried out in the temperature range between 250 and 400°C but the processed sheets usually exhibit high anisotropy in mechanical properties. In the current study, DSR process was found to be effective in improving anisotropy of mechanical properties and ductility at room temperature. Full recrystallization takes place from 200°C and above. A large drop of UTS occurs above 200°C where full recrystallization starts. Tensile elongation increases with annealing temperature but anisotropy degrades from 200°C onwards. Texture change during recrystallization is believed to be responsible for this result.


2011 ◽  
Vol 686 ◽  
pp. 120-124
Author(s):  
Jin Ping Fan ◽  
She Bin Wang ◽  
Bing She Xu

The effects of Sr addition on the mechanical properties and microstructure of Mg-6Al mag- nesium alloy both at 25 °C and at 175 °C were investigated by means of OM, SEM and EDS and XRD. Upon the Sr addition of 2%, the tensile strength was increased by 7.2% to 184.4MPa at 25 °C, while it was increased by 30% to 155.4MPa at 175 °C. The strengthening mechanism of Mg-6Al-xSr at lower temperature (25 °C) was different from that at higher temperature (175°C). The results show that the addition of strontium effectively improved the microstructure and mechanical properties of magnesium alloy.


Author(s):  
Davide Carnelli ◽  
Haimin Yao ◽  
Ming Dao ◽  
Pasquale Vena ◽  
Roberto Contro ◽  
...  

Secondary osteons, the fundamental units of cortical bone, consist of cylindrical lamellar composites composed of mineralized collagen fibrils. Due to its lamellar structure, a multiscale knowledge of the mechanical properties of cortical bone is required to understand the biomechanical function of the tissue. In this light, nanoindentation tests were performed along the axial and transverse directions following a radial path from the Haversian canal to the osteonal edges. Different length scales are explored by means of indentations at different maximum penetration depths. Indentation moduli and hardness data were then interpreted in the context of the known microstructure. Results suggest that secondary osteons hierarchical structure is responsible for an observed length scale effect, homogenization phenomena and anisotropy of mechanical properties.


2004 ◽  
Vol 19 (5) ◽  
pp. 1531-1538 ◽  
Author(s):  
Guangyin Yuan ◽  
Kenji Amiya ◽  
Hidemi Kato ◽  
Akihisa Inoue

The structure and mechanical properties of Mg–Zn–Al–Y base cast alloys containing an icosahedral quasicrystal phase (i-phase) as a main strengthening phase were investigated. Mg–8Zn–4Al–xY base bulk alloys containing the i-phase were prepared by casting into a copper mold at moderate cooling rates. The Y addition was effective for decreasing the size of the i-phase and the increasing the homogeneity of its dispersed state. The mechanical properties examined by compression tests at room temperature were much superior to those of a conventional AZ91 Mg alloy. The creep tests at elevated temperatures indicated a promising high temperature creep resistance of the quasicrystal-reinforced Mg–Zn–Al–Y cast alloy. The strengthening mechanism was also discussed.


2021 ◽  
Vol 1035 ◽  
pp. 925-930
Author(s):  
Ya Zhou Li ◽  
Yu Zhao ◽  
Xu Ran

To reduce the agglomeration of graphene and enhance the interface bonding between reduced graphene oxide (RGO) and copper substrate, copper plating on the graphene surface was prepared by the in-situ reduction method. To improve the strength of the copper matrix, the microalloying strategy of adding titanium to the matrix was adopted. By changing the mass fraction of titanium in the matrix, the optimum ratio of RGO was obtained( Ti mass fraction was 5:1), and the tensile strength was maximized. The results show that RGO did not agglomerate obviously in the matrix. At the same time, the composite powder could be densified rapidly by spark plasma sintering (SPS), which could effectively protect the original distribution of the additive phase in the matrix. In this paper, Cu@RGO/Cu-Ti was prepared and the strengthening mechanism of the composites discussed, providing a new insights into the interface design and carbide formation mechanism of advanced graphene/copper composites with high mechanical properties.


2020 ◽  
Vol 62 (7) ◽  
pp. 678-688
Author(s):  
X. Jiang ◽  
J. Chen ◽  
H. Sun ◽  
Z. Shao

Abstract High-entropy alloy composites were fabricated by ball milling, cold isostatic pressing and microwave sintering to which were added varied contents of Al2O3 whiskers, La-Ce, and carbon nanotubes-graphene, respectively. The structure and mechanical properties of the composites were investigated by X-ray diffraction, scanning electron microscopy and a microhardness tester. The high-entropy alloy and composites show amorphous phases and some crystalline phases. Accordingly, the addition of the reinforcement phase can refine the grain size. The formation mechanism of the phase is mainly related to the factors of mixing entropy, enthalpy, differences in atomic size, and the structure and property of the elements. The hardness of the composites is higher than that of the alloy (437.5 HV), and those composites reinforced by 0.5 wt.-% nanotubes- 0.5 wt.-% graphene are the highest (593.99 HV). The fracture morphology of the Al2O3 whisker reinforced composite shows a river pattern, indicating brittle cleavage. According to the research results, it can be concluded that the strengthening mechanism of the high entropy alloy composites mainly reflects fine grain strengthening and load transfer, and the toughening mechanism mainly crack bridging and a pulling out of the reinforcing phase.


Sign in / Sign up

Export Citation Format

Share Document