Stabilizing effect of α-Cr2O3 on highly active phases and catalytic performance of a chromium alumina catalyst in the process of isobutane dehydrogenation

2021 ◽  
Vol 509 ◽  
pp. 111610
Author(s):  
S.R. Egorova ◽  
R.R. Tuktarov ◽  
A.V. Boretskaya ◽  
A.I. Laskin ◽  
R.N. Gizyatullov ◽  
...  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tao Gan ◽  
Jingxiu Yang ◽  
David Morris ◽  
Xuefeng Chu ◽  
Peng Zhang ◽  
...  

AbstractActivation of O2 is a critical step in heterogeneous catalytic oxidation. Here, the concept of increased electron donors induced by nitrogen vacancy is adopted to propose an efficient strategy to develop highly active and stable catalysts for molecular O2 activation. Carbon nitride with nitrogen vacancies is prepared to serve as a support as well as electron sink to construct a synergistic catalyst with Pt nanoparticles. Extensive characterizations combined with the first-principles calculations reveal that nitrogen vacancies with excess electrons could effectively stabilize metallic Pt nanoparticles by strong p-d coupling. The Pt atoms and the dangling carbon atoms surround the vacancy can synergistically donate electrons to the antibonding orbital of the adsorbed O2. This synergistic catalyst shows great enhancement of catalytic performance and durability in toluene oxidation. The introduction of electron-rich non-oxide substrate is an innovative strategy to develop active Pt-based oxidation catalysts, which could be conceivably extended to a variety of metal-based catalysts for catalytic oxidation.


2006 ◽  
Vol 6 (2) ◽  
pp. 58 ◽  
Author(s):  
Didi Dwi Anggoro ◽  
Nor Aishah Saidina Amin

The direct conversion of natural gas-in particular, its principal component, methane into useful products has been the subject of intense study over the past decades. However, commercialization of this process is still not viable because its conversion and selectivity potentials remain low. Thus, the search continues to come up with a suitable catalyst that allows methane to be oxidized in a controlled environment to yield a high percentage of higher hydrocarbons. ZSM-5 zeolite has been known to be a suitable catalyst for olefin oligomerization. Previous studies, however, have indicated that ZSM-5 zeolites are not resistant to high temperatures. In this work, ZSM-5 was modified with copper and tungsten to develop a highly active and heat-resistant bifunctional oxidative acid catalyst. The oxidation of methane was performed over W/Cu/HZSM-5 catalyst and the results compared with the catalytic performance of W/ HZSM-5 and HZSM-5 catalysts. The metal oxide on the catalyst surface led to enhanced conversion of Hz and CO to CZ-3 ydrocarbons and, hence, reduced HzO selectivity. Inh the liquid hydrocarbons, Cs+ selectivity increased with increasing amount of surface Bn1Jnstedacid sites. The experimental results indicated higher methane conversion and liquid hydrocarbon selectivity than that of W/3.0Cu/HZSM-5 catalyst.


2018 ◽  
Vol 8 (3) ◽  
pp. 806-816 ◽  
Author(s):  
Shaohua Xie ◽  
Yuxi Liu ◽  
Jiguang Deng ◽  
Jun Yang ◽  
Xingtian Zhao ◽  
...  

The adsorbed o-xylene species can immediately react with active oxygen species at the highly active Pd–CoO interface between Pd NPs and meso-CoO, thus resulting in good catalytic performance of Pd/meso-CoO for o-xylene catalytic combustion.


2021 ◽  
Vol 875 ◽  
pp. 193-199
Author(s):  
Ahmad Shahbaz ◽  
Ali Afaf ◽  
Nawaz Tahir ◽  
Ullah Abid ◽  
Saher Saim

A highly active Platinum Group Metal (PGM) and non-PGM electrocatalysts with thermally extruded nanotubes have been prepared for Proton Exchange Membrane (PEM) fuel cell by sintering Nickel zeolitic imidazole framework (Ni-ZIF). Preeminent electro-catalytic activities have been observed through single fuel cell tests and rotating disk electrode (RDE). This study involves the comparison of Oxygen Reduction Reaction (ORR) activities and fuel cell (FC) test station performance of two catalyst Nickel and Platinum mixed Nickel nanotubes (Ni NT, Ni/Pt NT) respectively. The acidic cells with corresponding Ni and Ni/Pt catalysts delivers peak power densities of 325 mWcm-2 and 455 mWcm-2 at 75 °C inside fuel cell. Our results indicate that, the synthesized Nickel nanotubes has profound effect on catalytic performance of both PGM and non-PGM electro catalysts.


2017 ◽  
Vol 41 (7) ◽  
pp. 2756-2763 ◽  
Author(s):  
Sanha Jang ◽  
Shin Wook Kang ◽  
Dong Hyun Chun ◽  
Ho-Tae Lee ◽  
Jung-Il Yang ◽  
...  

A robust iron-carbide/alumina catalyst shows excellent catalytic performance for selective production of liquid fuels.


2018 ◽  
Vol 8 (21) ◽  
pp. 5646-5656 ◽  
Author(s):  
Kai Wang ◽  
Mei Dong ◽  
Xianjun Niu ◽  
Junfen Li ◽  
Zhangfeng Qin ◽  
...  

The regulation of the morphology of HZSM-5 zeolite supports on the modification effect of zinc, as well as their subsequent catalytic performance for the methanol-to-aromatics (MTA) process were investigated.


Catalysts ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 24 ◽  
Author(s):  
Yaqing Cen ◽  
Yuxue Yue ◽  
Saisai Wang ◽  
Jinyue Lu ◽  
Bolin Wang ◽  
...  

Adsorption and activation for substrates and the stability of Pd species in Pd-based catalysts are imperative for their wider adoption in industrial and practical applications. However, the influence factor of these aspects has remained unclear. This indicates a need to understand the various perceptions of the structure–function relationship that exists between microstructure and catalytic performance. Herein, we revisit the catalytic performance of supported-ionic-liquid-phase stabilized Pd-based catalysts with nitrogen-containing ligands as a promoter for acetylene hydrochlorination, and try to figure out their regulation. We found that the absolute value of the differential energy, |Eads(C2H2)-Eads(HCl)|, is negative correlated with the stability of palladium catalysts. These findings imply that the optimization of the electron structure provides a new strategy for designing highly active yet durable Pd-based catalysts.


2016 ◽  
Vol 852 ◽  
pp. 485-488 ◽  
Author(s):  
Qiang Zhang ◽  
Xin Zhao ◽  
Xue Hua Zhu ◽  
Ji Hang Li

A magnetic nanoparticles supported dual acidic ionic liquid catalyst was prepared via anchoring 3-sulfobutyl-1-(3-propyltriethoxysilane) imidazolium hydrogen sulfate onto the surface of silica-coated Fe3O4 nanoparticles. And this novel supported acidic ionic liquid catalyst showed good catalytic performance in esterification. More importantly, the catalyst could be easily recovered by an external magnet and reused six times without significant loss of catalytic activity.


Catalysts ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1469
Author(s):  
Piotr Latos ◽  
Agnieszka Siewniak ◽  
Natalia Barteczko ◽  
Sebastian Jurczyk ◽  
Sławomir Boncel ◽  
...  

An effective method for the synthesis of 2,3,6-trimethyl-1,4-benzoquinone via the oxidation of 2,3,6-trimethylphenol as the key step in the in the preparation of vitamin E was presented. An aqueous solution of H2O2 was used as the oxidant and Lewis acidic trifloaluminate ionic liquids [emim][OTf]-Al(OTf)3, χAl(OTf)3 = 0.25 or 0.15 as catalysts. Trifloaluminate ionic liquids were synthesised by the simple reaction between 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (triflate) [emim][OTf] and aluminium triflate used in sub-stoichiometric quantities. The influence of the reaction parameters on the reaction course, such as the amount and concentration of the oxidant, the amount of catalyst, the amount and the type of organic solvent, temperature, and the reaction time was investigated. Finally, 2,3,6-trimethyl-1,4-benzoquinone was obtained in high selectivity (99%) and high 2,3,6-trimethylphenol conversion (84%) at 70 °C after 2 h of oxidation using a 4-fold excess of 60% aqueous H2O2 and acetic acid as the solvent. The catalytic performance of trifloaluminate ionic liquids supported on multiwalled carbon nanotubes (loading of active phase: 9.1 wt.%) was also demonstrated. The heterogeneous ionic liquids not only retained their activity compared to the homogenous counterparts, but also proved to be a highly recyclable catalysts.


Sign in / Sign up

Export Citation Format

Share Document