High-sensitivity two-stage Hall magnetometer with enhanced linearity and spatial resolution

Measurement ◽  
2020 ◽  
Vol 153 ◽  
pp. 107423 ◽  
Author(s):  
Khalil R. Rostami ◽  
Ivan P. Nikitin
2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Hongbin Chen ◽  
Shuai Yu ◽  
Haiyang Liu ◽  
Jie Liu ◽  
Yongguang Xiao ◽  
...  

AbstractAssessment of lung and heart states is of critical importance for patients with pneumonia. In this study, we present a small-sized and ultrasensitive accelerometer for continuous monitoring of lung and heart sounds to evaluate the lung and heart states of patients. Based on two-stage amplification, which consists of an asymmetric gapped cantilever and a charge amplifier, our accelerometer exhibited an extremely high ratio of sensitivity to noise compared with conventional structures. Our sensor achieves a high sensitivity of 9.2 V/g at frequencies less than 1000 Hz, making it suitable to use to monitor weak physiological signals, including heart and lung sounds. For the first time, lung injury, heart injury, and both lung and heart injuries in discharged pneumonia patients were revealed by our sensor device. Our sound sensor also successfully tracked the recovery course of the discharged pneumonia patients. Over time, the lung and heart states of the patients gradually improved after discharge. Our observations were in good agreement with clinical reports. Compared with conventional medical instruments, our sensor device provides rapid and highly sensitive detection of lung and heart sounds, which greatly helps in the evaluation of lung and heart states of pneumonia patients. This sensor provides a cost-effective alternative approach to the diagnosis and prognosis of pneumonia and has the potential for clinical and home-use health monitoring.


2008 ◽  
Vol 16 (1) ◽  
pp. 34-37 ◽  
Author(s):  
R.A. Schwarzer

Automated Crystal Orientation Microscopy (ACOM) on a grain specific level has proved to be an invaluable new tool for characterizing polycrystalline materials. It is usually based on scanning facilities using electron diffraction , due to its high sensitivity and spatial resolution, but also attempts have been made which rely upon X-ray or hard synchrotron radiation diffraction. The grain orientations are commonly mapped in pseudo-colors on the scanning grid to construct Crystal Orientation Maps (COM), which represent “images” of the microstructure with the advantage of providing quantitative orientation contrast. In a similar way, misorientations across grain boundaries, Σ values of grain boundaries, or other microstructural characteristics are visualized by mapping the grains in the micrograph with specific colors. The principal objectives are the determination of quantitative, statistically meaningful data sets of crystal orientations, misorientations, the CSL character (Σ) of grain boundaries, local crystal texture (pole figures, ODF, MODF, OCF) and derived entities, phase discrimination and phase identification.


2021 ◽  
Author(s):  
Alifu Nuernisha ◽  
Rong Ma ◽  
Lijun Zhu ◽  
Zhong Du ◽  
Shuang Chen ◽  
...  

Abstract BackgroundNear-infrared II (NIR-II, 900-1700 nm) fluorescence bioimaging with advantages of good biosafety, excellent spatial resolution, high sensitivity and contrast, has attracted great attentions in biomedical research fields. However, most nanoprobes used for NIR-II fluorescence imaging have poor tumor-targeting ability and therapeutic efficiency. To overcome these limitations, a novel NIR-II-emissive theranostic nanoplatform for imaging and treatment of cervical cancer was designed and prepared. The NIR-II-emissive dye IR-783 and chemotherapy drug doxorubicin (DOX) were encapsulated into liposomes, and the tumor-targeting peptide TMTP1 was conjugated to the surface of the liposomes to form IR-783-DOX-TMTP1 nanoparticles (NPs) via self-assembly methods.ResultsThe IR-783-DOX-TMTP1 NPs showed strong NIR-II emission, excellent biocompatibility, a long lifetime, and low toxicity. Further, high-definition NIR-II fluorescence microscopy images of ear blood vessels and intratumor blood vessels were obtained from IR-783-DOX-TMTP1 NPs-stained mice with high spatial resolution under 808 nm laser excitation. Moreover, IR-783-DOX-TMTP1 NPs showed strong tumor targeting ability and high efficiently chemotherapeutic character towards cervical tumors. ConclusionsThe novel targeting and NIR-II-emissive IR-783-DOX-TMTP1 NPs have potential in diagnosis and therapy for cervical cancer.


1999 ◽  
Vol 202 (5) ◽  
pp. 497-511 ◽  
Author(s):  
E. Warrant ◽  
K. Bartsch ◽  
C. Günther

The fast-flying day-active hawkmoth Macroglossum stellatarum (Lepidoptera: Sphingidae) has a remarkable refracting superposition eye that departs radically from the classical principles of Exnerian superposition optics. Unlike its classical counterparts, this superposition eye is highly aspherical and contains extensive gradients of resolution and sensitivity. While such features are well known in apposition eyes, they were thought to be impossible in superposition eyes because of the imaging principle inherent in this design. We provide the first account of a superposition eye where these gradients are not only possible, but also produce superposition eyes of unsurpassed quality. Using goniometry and ophthalmoscopy, we find that superposition images formed in the eye are close to the diffraction limit. Moreover, the photoreceptors of the superposition eyes of M. stellatarum are organised to form local acute zones, one of which is frontal and slightly ventral, and another of which provides improved resolution along the equator of the eye. This angular packing of rhabdoms bears no resemblance to the angular packing of the overlying corneal facets. In fact, this eye has many more rhabdoms than facets, with up to four rhabdoms per facet in the frontal eye, a situation which means that M. stellatarum does not possess ommatidia in the accepted sense. The size of the facets and the area of the superposition aperture are both maximal at the frontal retinal acute zone. By having larger facets, a wider aperture and denser rhabdom packing, the frontal acute zone of M. stellatarum provides the eye with its sharpest and brightest image and samples the image with the densest photoreceptor matrix. It is this eye region that M. stellatarum uses to fixate flower entrances during hovering and feeding. This radical departure from classical Exnerian principles has resulted in a superposition eye which has not only high sensitivity but also outstanding spatial resolution.


1988 ◽  
Vol 32 ◽  
pp. 115-120 ◽  
Author(s):  
D. A. Carpenter ◽  
M. A. Taylor ◽  
C. E. Holcombe

A laboratory-based X-ray microprobe, composed of a high-brilliance microfocus X-ray tube, coupled with a small glass capillary, has been developed for materials applications. Because of total external reflectance of X rays from the smooth inside bore of the glass capillary, the microprobe has a high sensitivity as well as a high spatial resolution. The use of X rays to excite elemental fluorescence offers the advantages of good peak-to-background, the ability to operate in air, and minimal specimen preparation. In addition, the development of laboratory-based instrumentation has been of Interest recently because of greater accessibility when compared with synchrotron X-ray microprobes.


2014 ◽  
Vol 31 ◽  
pp. 1460302 ◽  
Author(s):  
Y. Yuan ◽  

The COherent Muon to Electron Transition (COMET) experiment aims to search for the charged-lepton-flavor-violating process through measure muon to electron conversion in a muonic atom to very high sensitivity of 2.6 × 10-17. A two-stage approach in order to realize the experiment has been taken and the first-stage (COMET Phase-I) has been approved by KEK.


1986 ◽  
Vol 69 ◽  
Author(s):  
C. R. Helms

AbstractAlthough classical materials characterization methods have existed for many years, modern microanalytical techniques had their start just over twenty years ago. In this paper, I will discuss some of the common techniques available today including AES, XPS, or ESCA, RBS, SIMS, and EDAX. A comparison of the key capabilities and limitations will be given including sensitivity, spatial resolution, quantitative analysis, nondestructive testing, chemical state determination, and analysis speed. It is clear that the reason each of these techniques still exists as commercial instrumentation is that each provides a unique set of capabilities, but also a unique set of limitations. To become viable in the materials analysis arena, a new technique must offer a significant extension of the capabilities already available but not at the cost of too severe a set of limitations. Examples would be the development of tools that offer both high sensitivity with accurate quantitative analysis, or good spatial resolution with high sensitivity, or minimal damage but good spatial resolution, etc. A number of papers in this volume will describe the details of these emerging technologies which provide advances in these areas; and I will attempt here to put a number of these new developments in perspective with regard to the more commonplace techniques available.


Computed tomography is a method for obtaining a series of radiographic pictures of contiguous slices through a solid object such as the human body. Each picture is computed from a set of X-ray transmission measurements and represents the distribution of X-ray attenuation in the slice. The high sensitivity of the method to changes in both density and atomic number has resulted in the development of new diagnostic methods in medicine. The limitations of the method are discussed in terms of two particular kinds of application. First, those applications in which a very precise determination of density or atomic number is required, but at low spatial resolution; an example would be the determination of the uniformity of mixture of plastics or metals. The second kind of application is that requiring high spatial resolution as in the detection of cracks and the visualization of internal structures in complicated objects.


Sign in / Sign up

Export Citation Format

Share Document