Present and Emerging Techniques for Materials Microanalysis

1986 ◽  
Vol 69 ◽  
Author(s):  
C. R. Helms

AbstractAlthough classical materials characterization methods have existed for many years, modern microanalytical techniques had their start just over twenty years ago. In this paper, I will discuss some of the common techniques available today including AES, XPS, or ESCA, RBS, SIMS, and EDAX. A comparison of the key capabilities and limitations will be given including sensitivity, spatial resolution, quantitative analysis, nondestructive testing, chemical state determination, and analysis speed. It is clear that the reason each of these techniques still exists as commercial instrumentation is that each provides a unique set of capabilities, but also a unique set of limitations. To become viable in the materials analysis arena, a new technique must offer a significant extension of the capabilities already available but not at the cost of too severe a set of limitations. Examples would be the development of tools that offer both high sensitivity with accurate quantitative analysis, or good spatial resolution with high sensitivity, or minimal damage but good spatial resolution, etc. A number of papers in this volume will describe the details of these emerging technologies which provide advances in these areas; and I will attempt here to put a number of these new developments in perspective with regard to the more commonplace techniques available.

Author(s):  
V. V. Damiano ◽  
R. P. Daniele ◽  
H. T. Tucker ◽  
J. H. Dauber

An important example of intracellular particles is encountered in silicosis where alveolar macrophages ingest inspired silica particles. The quantitation of the silica uptake by these cells may be a potentially useful method for monitoring silica exposure. Accurate quantitative analysis of ingested silica by phagocytic cells is difficult because the particles are frequently small, irregularly shaped and cannot be visualized within the cells. Semiquantitative methods which make use of particles of known size, shape and composition as calibration standards may be the most direct and simplest approach to undertake. The present paper describes an empirical method in which glass microspheres were used as a model to show how the ratio of the silicon Kα peak X-ray intensity from the microspheres to that of a bulk sample of the same composition correlated to the mass of the microsphere contained within the cell. Irregular shaped silica particles were also analyzed and a calibration curve was generated from these data.


Author(s):  
Matthew T. Johnson ◽  
Ian M. Anderson ◽  
Jim Bentley ◽  
C. Barry Carter

Energy-dispersive X-ray spectrometry (EDS) performed at low (≤ 5 kV) accelerating voltages in the SEM has the potential for providing quantitative microanalytical information with a spatial resolution of ∼100 nm. In the present work, EDS analyses were performed on magnesium ferrite spinel [(MgxFe1−x)Fe2O4] dendrites embedded in a MgO matrix, as shown in Fig. 1. spatial resolution of X-ray microanalysis at conventional accelerating voltages is insufficient for the quantitative analysis of these dendrites, which have widths of the order of a few hundred nanometers, without deconvolution of contributions from the MgO matrix. However, Monte Carlo simulations indicate that the interaction volume for MgFe2O4 is ∼150 nm at 3 kV accelerating voltage and therefore sufficient to analyze the dendrites without matrix contributions.Single-crystal {001}-oriented MgO was reacted with hematite (Fe2O3) powder for 6 h at 1450°C in air and furnace cooled. The specimen was then cleaved to expose a clean cross-section suitable for microanalysis.


Author(s):  
Chloe Alexandre ◽  
Alban Latremoliere ◽  
Patrick H. Finan

With the advent of modern lifestyles, there has been a significant extension of daily activities, mostly at the cost of sleep. Lack of sleep affects many biological systems, including various cognitive functions, the immune system, metabolism, and pain. Both sleep and pain are complex neurological processes that encompass many dynamic components. As a result, defining the precise interactions between these two systems represents a challenge, especially for chronic paradigms. This chapter describes how sleep is measured and how it can be experimentally altered in humans and animal models, and, in turn, how sleep disturbances, either acute or chronic, can affect different aspects of pain. Possible mechanisms involved are discussed, including an increase in inflammatory processes, a loss of nociceptive inhibitory pathways, and a defect in the cognitive processing of noxious inputs.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yan Helen Yan ◽  
Sherry X. Chen ◽  
Lauren Y. Cheng ◽  
Alyssa Y. Rodriguez ◽  
Rui Tang ◽  
...  

AbstractWhole exome sequencing (WES) is used to identify mutations in a patient’s tumor DNA that are predictive of tumor behavior, including the likelihood of response or resistance to cancer therapy. WES has a mutation limit of detection (LoD) at variant allele frequencies (VAF) of 5%. Putative mutations called at ≤ 5% VAF are frequently due to sequencing errors, therefore reporting these subclonal mutations incurs risk of significant false positives. Here we performed ~ 1000 × WES on fresh-frozen and formalin-fixed paraffin-embedded (FFPE) tissue biopsy samples from a non-small cell lung cancer patient, and identified 226 putative mutations at between 0.5 and 5% VAF. Each variant was then tested using NuProbe NGSure, to confirm the original WES calls. NGSure utilizes Blocker Displacement Amplification to first enrich the allelic fraction of the mutation and then uses Sanger sequencing to determine mutation identity. Results showed that 52% of the 226 (117) putative variants were disconfirmed, among which 2% (5) putative variants were found to be misidentified in WES. In the 66 cancer-related variants, the disconfirmed rate was 82% (54/66). This data demonstrates Blocker Displacement Amplification allelic enrichment coupled with Sanger sequencing can be used to confirm putative mutations ≤ 5% VAF. By implementing this method, next-generation sequencing can reliably report low-level variants at a high sensitivity, without the cost of high sequencing depth.


Geosciences ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 60
Author(s):  
Viacheslav Glinskikh ◽  
Oleg Nechaev ◽  
Igor Mikhaylov ◽  
Kirill Danilovskiy ◽  
Vladimir Olenchenko

This paper is dedicated to the topical problem of examining permafrost’s state and the processes of its geocryological changes by means of geophysical methods. To monitor the cryolithozone, we proposed and scientifically substantiated a new technique of pulsed electromagnetic cross-well sounding. Based on the vector finite-element method, we created a mathematical model of the cross-well sounding process with a pulsed source in a three-dimensional spatially heterogeneous medium. A high-performance parallel computing algorithm was developed and verified. Through realistic geoelectric models of permafrost with a talik under a highway, constructed following the results of electrotomography field data interpretation, we numerically simulated the pulsed sounding on the computing resources of the Siberian Supercomputer Center of SB RAS. The simulation results suggest the proposed system of pulsed electromagnetic cross-well monitoring to be characterized by a high sensitivity to the presence and dimensions of the talik. The devised approach can be oriented to addressing a wide range of issues related to monitoring permafrost rocks under civil and industrial facilities, buildings, and constructions.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Yoel Sebbag ◽  
Eliran Talker ◽  
Alex Naiman ◽  
Yefim Barash ◽  
Uriel Levy

AbstractRecently, there has been growing interest in the miniaturization and integration of atomic-based quantum technologies. In addition to the obvious advantages brought by such integration in facilitating mass production, reducing the footprint, and reducing the cost, the flexibility offered by on-chip integration enables the development of new concepts and capabilities. In particular, recent advanced techniques based on computer-assisted optimization algorithms enable the development of newly engineered photonic structures with unconventional functionalities. Taking this concept further, we hereby demonstrate the design, fabrication, and experimental characterization of an integrated nanophotonic-atomic chip magnetometer based on alkali vapor with a micrometer-scale spatial resolution and a magnetic sensitivity of 700 pT/√Hz. The presented platform paves the way for future applications using integrated photonic–atomic chips, including high-spatial-resolution magnetometry, near-field vectorial imaging, magnetically induced switching, and optical isolation.


1985 ◽  
Vol 229 (3) ◽  
pp. 785-790 ◽  
Author(s):  
D P Wade ◽  
B L Knight ◽  
A K Soutar

A new technique has been developed to identify low-density-lipoprotein (LDL) receptors on nitrocellulose membranes, after transfer from SDS/polyacrylamide gels, by ligand blotting with biotin-modified LDL. Modification with biotin hydrazide of periodate-oxidized lipoprotein sugar residues does not affect the ability of the lipoprotein to bind to the LDL receptor. Bound lipoprotein is detected with high sensitivity by a streptavidin-biotin-peroxidase complex, and thus this method eliminates the need for specific antibodies directed against the ligand. The density of the bands obtained is proportional to the amount of pure LDL receptor protein applied to the SDS/polyacrylamide gel, so that it is possible to quantify LDL receptor protein in cell extracts. Biotin can be attached to other lipoproteins, for example very-low-density lipoproteins with beta-mobility, and thus the method will be useful in the identification and isolation of other lipoprotein receptors.


2008 ◽  
Vol 16 (1) ◽  
pp. 34-37 ◽  
Author(s):  
R.A. Schwarzer

Automated Crystal Orientation Microscopy (ACOM) on a grain specific level has proved to be an invaluable new tool for characterizing polycrystalline materials. It is usually based on scanning facilities using electron diffraction , due to its high sensitivity and spatial resolution, but also attempts have been made which rely upon X-ray or hard synchrotron radiation diffraction. The grain orientations are commonly mapped in pseudo-colors on the scanning grid to construct Crystal Orientation Maps (COM), which represent “images” of the microstructure with the advantage of providing quantitative orientation contrast. In a similar way, misorientations across grain boundaries, Σ values of grain boundaries, or other microstructural characteristics are visualized by mapping the grains in the micrograph with specific colors. The principal objectives are the determination of quantitative, statistically meaningful data sets of crystal orientations, misorientations, the CSL character (Σ) of grain boundaries, local crystal texture (pole figures, ODF, MODF, OCF) and derived entities, phase discrimination and phase identification.


2003 ◽  
Vol 36 (6) ◽  
pp. 1319-1323 ◽  
Author(s):  
A. Morawiec

A method that improves the accuracy of misorientations determined from Kikuchi patterns is described. It is based on the fact that some parameters of a misorientation calculated from two orientations are more accurate than other parameters. A procedure which eliminates inaccurate elements is devised. It requires at least two foil inclinations. The quality of the approach relies on the possibility to set large sample-to-detector distances and the availability of good spatial resolution of transmission electron microscopy. Achievable accuracy is one order of magnitude better than the accuracy of the standard procedure.


Sign in / Sign up

Export Citation Format

Share Document