scholarly journals Torsional vibrations in heavy-truck powertrains with flywheel attached centrifugal pendulum vibration absorbers

2022 ◽  
Vol 167 ◽  
pp. 104547
Author(s):  
Erik R. Gomez ◽  
Jakob Sjöstrand ◽  
Leif Kari ◽  
Ines Lopez Arteaga
Author(s):  
Yukio Ishida ◽  
Tsuyoshi Inoue ◽  
Taishi Kagawa ◽  
Motohiko Ueda

Driving torque of rotating machinery, such as automobile engines, changes periodically. As a result, torsional vibrations occur and cause serious noise and vibration problems. In this study, the dynamic characteristics of centrifugal pendulum vibration absorbers restraining torsional vibration is investigated both theoretically and experimentally. In the theoretical analysis, the nonlinear characteristics are taken into consideration under the assumption of large amplitude vibration of pendulum. It is clarified that the centrifugal pendulum, although it has remarkable effects on suppressing harmonic vibration, induces large amplitude harmonic vibrations, the second and third superharmonic resonances, and unstable vibrations of harmonic type. We propose various methods to suppress these secondarily induced vibration and show that it is possible to suppress torsional vibrations to substancially zero amplitude in all through the rotational speed range.


Author(s):  
Abdallah S. Al-suwaiyan ◽  
Steven W. Shaw

Abstract Centrifugal pendulum vibration absorbers are a type of tuned dynamic absorber used for the attenuation of torsional vibrations in rotating and reciprocating machines. They consist of masses that are constrained to move along a specific path relative to the rotating shaft of the machine. Previous analytical studies have considered the performance of multi-absorber systems with a very specific path and of single absorber systems with general paths. In this paper we investigate the performance and dynamic stability of systems comprised of multiple, identical centrifugal pendulum vibration absorbers that have general paths. The study is carried out by considering a scaling of the system parameters based on physically realistic ranges of dimensionless parameters, which allows for application of the method of averaging. It is found that performance is limited by two distinct types of instabilities. In one of these, the systems of absorbers lose their synchronous character, while the other is a classical nonlinear jump behavior that affects all absorbers identically and leads to disastourous results. These results are used to evaluate the performance of systems with common types of absorber paths, namely circles and cycloids. The analytical results are compared against numerical simulations and good agreement is found.


Author(s):  
Chang-Po Chao ◽  
Steven W. Shaw

Abstract Recent studies have demonstrated an arrangement of centrifugal pendulum vibration absorbers that is very effective at reducing torsional vibrations in rotating machinery. The basic system is composed of a pair of identical absorbers that are tuned to a one-half subharmonic order relative to the applied fluctuating torque. These absorbers, when moving in an out of phase manner along a particular path relative to the rotor, are capable of significantly reducing torsional vibrations of a desired order. In this paper we consider the response of systems composed of multiple pairs of these absorbers, with the goal of determining the dynamic stability of the desired response and the effects of small imperfections in the absorbers’ paths. The desired response of this system is one in which the N absorbers act as a single pair, with two groups of N/2 each moving with equal amplitude but exactly out of phase with respect to one another. It is shown that this response can be made to be dynamically stable and robust to certain model uncertainties by a slight, identical overtuning of each absorber. The analytical results, obtained by the method of averaging and symmetric bifurcation theory, are confirmed by simulations for the cases with two and three pairs of absorbers.


Author(s):  
Brendan J. Vidmar ◽  
Steven W. Shaw ◽  
Brian F. Feeny ◽  
Bruce K. Geist

We consider nonlinear interactions in systems of order-tuned torsional vibration absorbers. These absorbers, which consist of centrifugally driven pendulums fitted to a rotor, are used to reduce engine-order torsional vibrations in rotating machines, including automotive engines, helicopter rotors, and light aircraft engines. In all current applications, absorber systems are designed to reduce torsional vibrations at a single order. However, when two or more excitation orders are present and absorbers are introduced to address different orders, undesirable nonlinear interactions become possible under certain resonance conditions. Under these conditions, a common example of which occurs for orders n and 2n, crosstalk between the absorbers, acting through the rotor inertia, can result in instabilities that are detrimental to system response. In order to design absorber systems that avoid these interactions, we develop predictive models that allow one to select proper tuning and sizing of the absorbers. These models are based on perturbation methods applied to the system equations of motion, and they yield system response features, including absorber and rotor response amplitudes and stability, as a function of parameters of interest. The model-based analytical results are compared against numerical simulations of the complete nonlinear equations of motion, and are shown to be in good agreement. These results are useful for the selection of absorber parameters for desired performance. For example, they allow for approximate closed form expressions for the ratio of absorber masses at the two orders that yield optimal performance.


Author(s):  
Yenkai Wang ◽  
Steven W. Shaw ◽  
Chang-Po Chao

Abstract This paper considers the placement, sizing and tuning of centrifugal pendulum vibration absorbers for the reduction of transverse vibrations in rotating beams. A simplified model describing the linearized dynamics of a rotating beam with external excitation and attached absorbers is used for the analysis. A design strategy is offered wherein individual absorbers are designed to reduce vibration amplitudes and stress levels caused by troublesome resonances. It is shown that this procedure offers significant reduction in vibratory stresses, even in the case of excitations composed of multiple harmonics.


1964 ◽  
Vol 86 (3) ◽  
pp. 257-263 ◽  
Author(s):  
D. E. Newland

Centrifugal pendulums have been used for many years to limit the torsional vibration of reciprocating engines. Recently small pendulums, designed to swing through amplitudes of about 45 deg, have been tested for lightweight aircraft engines. These have not functioned properly, and have been found to swing through much larger angles than expected, damaging the stops limiting motion of the pendulum counterweight. This paper investigates the large-amplitude motion of centrifugal-pendulum vibration absorbers.


Author(s):  
Chengzhi Shi ◽  
Robert G. Parker ◽  
Steven W. Shaw

This note provides an analytical proof of the optimal tuning of centrifugal pendulum vibration absorbers (CPVAs) to reduce in-plane translational and rotational vibration for a rotor with N cyclically symmetric substructures attached to it. The reaction forces that the substructures (helicopter or wind turbine blades, for example) exert on the rotor are first analyzed. The linearized equations of motion for the vibration are then solved by a gyroscopic system modal analysis procedure. The solutions show that the rotor translational vibration at order j is reduced when one group of CPVAs is tuned to order jN − 1 and the other is tuned to order jN + 1. Derivation of this result is not available in the literature. The current derivation also yields the better known result that tuning CPVAs to order jN reduces rotational rotor vibration at order j.


2020 ◽  
Vol 25 (2) ◽  
pp. 266-277
Author(s):  
David E. Newland

For over 60 years, the torsional vibration of reciprocating aircraft engines has been controlled by centrifugal pendulum vibration absorbers. Loose weights attached to an engine's crankshaft act as tuned-mass absorbers by oscillating at a frequency in proportion to rotational speed. More recently, similar loose masses have been attached to the flywheels of automobile engines. The need to achieve increased power from fewer cylinders, while reducing weight and improving economy, has exacerbated torsional vibration of the drive train. The dynamics of a wheel carrying many centrifugal pendulums of bifilar design has been the subject of a growing literature, but much less has been written about roller-type pendulums and about overall system performance. This paper is a new analysis of bifilar and roller systems and their design requirements. The current state of knowledge about practical design limitations is explained and the need for further research discussed.


Author(s):  
Bahadir Sarikaya ◽  
Murat Inalpolat ◽  
Hyun Ku Lee ◽  
Moo Suk Kim

Abstract A generalized nonlinear time-varying, planar dynamic model of bifilar centrifugal pendulum vibration absorbers (CPVA) is proposed. This dynamic model enables fast prediction of vibration reduction performance of any CPVA design considering the impact of absorber rollers, gravity, end stops and translational motion of the system. The modeling framework provides comparative, simultaneous simulation results for numerous different design possibilities, and thus can be used to optimize CPVA designs. The dynamic model is generic and can handle N individually designed absorbers on a rotor with numerous path options ranging from circular to cycloid. Absorbers can be designed to be equally or unequally spaced. In this study, first the dynamic model of the bifilar CPVAs is derived. Then, case studies are provided to showcase the capabilities of the modeling framework. Initially, maximum applicable dynamic torque to a CPVA and vibration reduction performance are investigated by considering the effect of tuning order and different absorber path options for different operating speeds. Then, impact of different modelling features on system frequency response and limit dynamic torque is investigated. Interactions between the important design parameters are highlighted. Finally, the influence of end stop positioning on the CPVA dynamic response is illustrated.


Sign in / Sign up

Export Citation Format

Share Document