Machine Learning Cutting Force, Surface Roughness, and Tool Life in High Speed Turning Processes

Author(s):  
Yun Zhang ◽  
Xiaojie Xu
2014 ◽  
Vol 629 ◽  
pp. 487-492 ◽  
Author(s):  
Mohd Shahir Kasim ◽  
Che Hassan Che Haron ◽  
Jaharah Abd Ghani ◽  
E. Mohamad ◽  
Raja Izamshah ◽  
...  

This study was carried out to investigate how the high-speed milling of Inconel 718 using ball nose end mill could enhance the productivity and quality of the finish parts. The experimental work was carried out through Response Surface Methodology via Box-Behnken design. The effect of prominent milling parameters, namely cutting speed, feed rate, depth of cut (DOC), and width of cut (WOC) were studied to evaluate their effects on tool life, surface roughness and cutting force. In this study, the cutting speed, feed rate, DOC, and WOC were in the range of 100 - 140 m/min, 0.1 - 0.2 mm/tooth, 0.5 - 1.0 mm and 0.2 - 1.8 mm, respectively. In order to reduce the effect of heat generated during the high speed milling operation, minimum quantity lubrication of 50 ml/hr was used. The effect of input factors on the responds was identified by mean of ANOVA. The response of tool life, surface roughness and cutting force together with calculated material removal rate were then simultaneously optimized and further described by perturbation graph. Interaction between WOC with other factors was found to be the most dominating factor of all responds. The optimum cutting parameter which obtained the longest tool life of 60 mins, minimum surface roughness of 0.262 μm and resultant force of 221 N was at cutting speed of 100 m/min, feed rate of 0.15 mm/tooth, DOC 0.5 m and WOC 0.66 mm.


2010 ◽  
Vol 129-131 ◽  
pp. 993-998 ◽  
Author(s):  
M.S. Ahmad Yasir ◽  
C.H. Che Hassan ◽  
A.G. Jaharah ◽  
M. Norhamidi ◽  
A.I. Gusri ◽  
...  

The effectiveness of the usage of coolant in high speed machining of highly reactive material like titanium and its alloys is still far away uncertain. For this reason, it is wiser to study the effectiveness of MQL under transient cutting speed before we go to the high speed machining. This paper discusses the effect of MQL on the machinability of Ti-6Al-4V by using PVD coated cemented carbide tools. The machinability of Ti-6Al-4V was investigated based on the effect on cutting force and the tool life. The performance of PVD coated cemented carbide tool was investigated at various cutting condition. Completely dry machining and near dry (MQL) were applied in this experiment. For near dry machining, two levels of coolant flow rate were investigated, 50 and 100 mL/H. The effectiveness of mist coolant was tested at three different levels of cutting speed, 120, 135 and 150 m/min. Application of mist coolant is more significant at cutting speed of 135 m/min. At this speed longer tool life was obtained when more coolant was applied. No significant effect of the cutting speed and coolant flow rate on the surface roughness. Surface roughness is more sensitive to the feed rate and the depth of cut. No significant effect of application of MQL on cutting force at early stage of machining. MQL seems to be more affective when tools start worn out where greater contact area between tool and work piece occur to give better lubrication effect.


Author(s):  
Emel Kuram

Tool coatings can improve the machinability performance of difficult-to-cut materials such as titanium alloys. Therefore, in the current work, high-speed milling of Ti6Al4V titanium alloy was carried out to determine the performance of various coated cutting tools. Five types of coated carbide inserts – monolayer TiCN, AlTiN, TiAlN and two layers TiCN + TiN and AlTiN + TiN, which were deposited by physical vapour deposition – were employed in the experiments. Tool wear, cutting force, surface roughness and chip morphology were evaluated and compared for different coated tools. To understand the tool wear modes and mechanisms, detailed scanning electron microscope analysis combined with energy dispersive X-ray of the worn inserts were conducted. Abrasion, adhesion, chipping and mechanical crack on flank face and coating delamination, adhesion and crater wear on rake face were observed during high-speed milling of Ti6Al4V titanium alloy. In terms of tool wear, the lowest value was obtained with TiCN-coated insert. It was also found that at the beginning of the machining pass TiAlN-coated insert and at the end of machining TiCN-coated insert gave the lowest cutting force and surface roughness values. No change in chip morphology was observed with different coated inserts.


Author(s):  
Rusdi Nur ◽  
MY Noordin ◽  
S Izman ◽  
D Kurniawan

Austenitic stainless steel AISI 316L is used in many applications, including chemical industry, nuclear power plants, and medical devices, because of its high mechanical properties and corrosion resistance. Machinability study on the stainless steel is of interest. Toward sustainable manufacturing, this study also includes the power consumption during machining along with other machining responses of cutting force, surface roughness, and tool life. Turning on the stainless steel was performed using coated carbide tool without using cutting fluid. The turning was performed at various cutting speeds (90, 150, and 210 m/min) and feeds (0.10, 0.16, and 0.22 mm/rev). Response surface methodology was adopted in designing the experiments to quantify the effect of cutting speed and feed on the machining responses. It was found that cutting speed was proportional to power consumption and was inversely proportional to tool life, and showed no significant effect on the cutting force and the surface roughness. Feed was proportional to cutting force, power consumption, and surface roughness and was inversely proportional to tool life. Empirical equations developed from the results for all machining responses were shown to be useful in determining the optimum cutting parameters range.


2009 ◽  
Vol 407-408 ◽  
pp. 608-611 ◽  
Author(s):  
Chang Yi Liu ◽  
Cheng Long Chu ◽  
Wen Hui Zhou ◽  
Jun Jie Yi

Taguchi design methodology is applied to experiments of flank mill machining parameters of titanium alloy TC11 (Ti6.5A13.5Mo2Zr0.35Si) in conventional and high speed regimes. This study includes three factors, cutting speed, feed rate and depth of cut, about two types of tools. Experimental runs are conducted using an orthogonal array of L9(33), with measurement of cutting force, cutting temperature and surface roughness. The analysis of result shows that the factors combination for good surface roughness, low cutting temperature and low resultant cutting force are high cutting speed, low feed rate and low depth of cut.


Sign in / Sign up

Export Citation Format

Share Document