Multi-Objective Optimization Using Box-Behken of Response Surface Methodology for High-Speed Machining of Inconel 718

2014 ◽  
Vol 629 ◽  
pp. 487-492 ◽  
Author(s):  
Mohd Shahir Kasim ◽  
Che Hassan Che Haron ◽  
Jaharah Abd Ghani ◽  
E. Mohamad ◽  
Raja Izamshah ◽  
...  

This study was carried out to investigate how the high-speed milling of Inconel 718 using ball nose end mill could enhance the productivity and quality of the finish parts. The experimental work was carried out through Response Surface Methodology via Box-Behnken design. The effect of prominent milling parameters, namely cutting speed, feed rate, depth of cut (DOC), and width of cut (WOC) were studied to evaluate their effects on tool life, surface roughness and cutting force. In this study, the cutting speed, feed rate, DOC, and WOC were in the range of 100 - 140 m/min, 0.1 - 0.2 mm/tooth, 0.5 - 1.0 mm and 0.2 - 1.8 mm, respectively. In order to reduce the effect of heat generated during the high speed milling operation, minimum quantity lubrication of 50 ml/hr was used. The effect of input factors on the responds was identified by mean of ANOVA. The response of tool life, surface roughness and cutting force together with calculated material removal rate were then simultaneously optimized and further described by perturbation graph. Interaction between WOC with other factors was found to be the most dominating factor of all responds. The optimum cutting parameter which obtained the longest tool life of 60 mins, minimum surface roughness of 0.262 μm and resultant force of 221 N was at cutting speed of 100 m/min, feed rate of 0.15 mm/tooth, DOC 0.5 m and WOC 0.66 mm.

2013 ◽  
Vol 873 ◽  
pp. 350-360
Author(s):  
Song Peng ◽  
Li Jing Xie ◽  
Xi Bin Wang ◽  
Na Xin Fu ◽  
Xing Kuan Shi

High-speed milling tests for 65vol.%SiCp/6063Al composites were performed by polycrystalline diamond (PCD) tools, response surface methodology was utilized in this study, and a cutting force model was developed through response surface methodology, which contained some important parameters such as cutting speed, cutting feed rate, cutting depth and cutting width. The analysis of variance (ANOVA) indicated that the proposed mathematical model can adequately describe the relationship between cutting force and cutting process parameters. The results show that cutting depth is the biggest important factor of milling force, and cutting feed rate is the second important factor, cutting speed is the third; milling force would not increase with the increasing of cutting width.


2018 ◽  
Vol 5 ◽  
pp. 5 ◽  
Author(s):  
Pralhad B. Patole ◽  
Vivek V. Kulkarni

This paper presents an investigation into the minimum quantity lubrication mode with nano fluid during turning of alloy steel AISI 4340 work piece material with the objective of experimental model in order to predict surface roughness and cutting force and analyze effect of process parameters on machinability. Full factorial design matrix was used for experimental plan. According to design of experiment surface roughness and cutting force were measured. The relationship between the response variables and the process parameters is determined through the response surface methodology, using a quadratic regression model. Results show how much surface roughness is mainly influenced by feed rate and cutting speed. The depth of cut exhibits maximum influence on cutting force components as compared to the feed rate and cutting speed. The values predicted from the model and experimental values are very close to each other.


2016 ◽  
Vol 836-837 ◽  
pp. 168-174 ◽  
Author(s):  
Ying Fei Ge ◽  
Hai Xiang Huan ◽  
Jiu Hua Xu

High-speed milling tests were performed on vol. (5%-8%) TiCp/TC4 composite in the speed range of 50-250 m/min using PCD tools to nvestigate the cutting temperature and the cutting forces. The results showed that radial depth of cut and cutting speed were the two significant influences that affected the cutting forces based on the Taguchi prediction. Increasing radial depth of cut and feed rate will increase the cutting force while increasing cutting speed will decrease the cutting force. Cutting force increased less than 5% when the reinforcement volume fraction in the composites increased from 0% to 8%. Radial depth of cut was the only significant influence factor on the cutting temperature. Cutting temperature increased with the increasing radial depth of cut, feed rate or cutting speed. The cutting temperature for the titanium composites was 40-90 °C higher than that for the TC4 matrix. However, the cutting temperature decreased by 4% when the reinforcement's volume fraction increased from 5% to 8%.


Author(s):  
Neelesh Ku. Sahu ◽  
A. B. Andhare

Surface roughness is an important surface integrity parameter for difficult to cut alloys such as Titanium alloys (Ti-6Al-4V). In the present work, initially a mathematical model is developed for predicting surface roughness for turning operation using Response Surface Methodology (RSM). Later, a recently developed advanced optimization algorithm named as Teaching Learning Based Optimization (TLBO) is used for further parameter optimization of the equation developed using RSM. The design of experiments was performed using central composite design (CCD). Analysis of variance (ANOVA) demonstrated the significant and non-significant parameters as well as validity of predicted model. RSM describes the effect of main and mixed (interaction) variables on the surface roughness of titanium alloys. RSM analysis over experimental results showed that surface roughness decreased as cutting speed increased whereas it increased with increase in feed rate. Depth of cut had no effect on surface roughness. By comparing the predicted and measured values of surface roughness the maximum error was found to be 7.447 %. It indicates that the developed model can be effectively used to predict the surface roughness. Further optimization of the roughness equation was carried out by TLBO method. It gave minimum surface roughness as 0.3120 μm at the cutting speed of 1704 RPM (171.217 m/min), feed rate of 55.6 mm/min (.033 mm/rev) and depth of cut of 0.7 mm. These results were confirmed by confirmation experiment and were better than that of RSM.


2016 ◽  
Vol 16 (2) ◽  
pp. 75-88 ◽  
Author(s):  
Munish Kumar Gupta ◽  
P. K. Sood ◽  
Vishal S. Sharma

AbstractIn the present work, an attempt has been made to establish the accurate surface roughness (Ra, Rq and Rz) prediction model using response surface methodology with Box–Cox transformation in turning of Titanium (Grade-II) under minimum quantity lubrication (MQL) conditions. This surface roughness model has been developed in terms of machining parameters such as cutting speed, feed rate and approach angle. Firstly, some experiments are designed and conducted to determine the optimal MQL parameters of lubricant flow rate, input pressure and compressed air flow rate. After analyzing the MQL parameter, the final experiments are performed with cubic boron nitride (CBN) tool to optimize the machining parameters for surface roughness values i. e., Ra, Rq and Rz using desirability analysis. The outcomes demonstrate that the feed rate is the most influencing factor in the surface roughness values as compared to cutting speed and approach angle. The predicted results are fairly close to experimental values and hence, the developed models using Box-Cox transformation can be used for prediction satisfactorily.


2009 ◽  
Vol 407-408 ◽  
pp. 608-611 ◽  
Author(s):  
Chang Yi Liu ◽  
Cheng Long Chu ◽  
Wen Hui Zhou ◽  
Jun Jie Yi

Taguchi design methodology is applied to experiments of flank mill machining parameters of titanium alloy TC11 (Ti6.5A13.5Mo2Zr0.35Si) in conventional and high speed regimes. This study includes three factors, cutting speed, feed rate and depth of cut, about two types of tools. Experimental runs are conducted using an orthogonal array of L9(33), with measurement of cutting force, cutting temperature and surface roughness. The analysis of result shows that the factors combination for good surface roughness, low cutting temperature and low resultant cutting force are high cutting speed, low feed rate and low depth of cut.


Author(s):  
Nhu-Tung Nguyen ◽  
Dung Hoang Tien ◽  
Nguyen Tien Tung ◽  
Nguyen Duc Luan

In this study, the influence of cutting parameters and machining time on the tool wear and surface roughness was investigated in high-speed milling process of Al6061 using face carbide inserts. Taguchi experimental matrix (L9) was chosen to design and conduct the experimental research with three input parameters (feed rate, cutting speed, and axial depth of cut). Tool wear (VB) and surface roughness (Ra) after different machining strokes (after 10, 30, and 50 machining strokes) were selected as the output parameters. In almost cases of high-speed face milling process, the most significant factor that influenced on the tool wear was cutting speed (84.94 % after 10 machining strokes, 52.13 % after 30 machining strokes, and 68.58 % after 50 machining strokes), and the most significant factors that influenced on the surface roughness were depth of cut and feed rate (70.54 % after 10 machining strokes, 43.28 % after 30 machining strokes, and 30.97 % after 50 machining strokes for depth of cut. And 22.01 % after 10 machining strokes, 44.39 % after 30 machining strokes, and 66.58 % after 50 machining strokes for feed rate). Linear regression was the most suitable regression of VB and Ra with the determination coefficients (R2) from 88.00 % to 91.99 % for VB, and from 90.24 % to 96.84 % for Ra. These regression models were successfully verified by comparison between predicted and measured results of VB and Ra. Besides, the relationship of VB, Ra, and different machining strokes was also investigated and evaluated. Tool wear, surface roughness models, and their relationship that were found in this study can be used to improve the surface quality and reduce the tool wear in the high-speed face milling of aluminum alloy Al6061


2013 ◽  
Vol 652-654 ◽  
pp. 2191-2195 ◽  
Author(s):  
Zheng Mei Zhang ◽  
Hai Wen Xiao ◽  
Gui Zhen Wang ◽  
Shu Zhong Zhang ◽  
Shu Qin Zhang

Based on experiment of sawing Wulian red granite with diamond circular saw, the relations between the cutting force with machining parameters are studied. Cutting speed, feed rate and cutting depth are considered as the process parameters. The cutting force in sawing granite operation are measured and the experimental results are then analyzed using response surface methodology. From the analysis, it is seen that the cutting force Fx , Fy and Fz are reduced with the increase of cutting speed and increased with the increase of feed rate and cutting depth, and the mathematical models of the cutting force are developed. By ANOVA for the cutting force models, It is concluded that the models are significant at 95% confidence level and the significant effects are the first-order of cutting speed, feed speed, cutting depth and the quadratic of cutting depth.


2016 ◽  
Vol 686 ◽  
pp. 19-26 ◽  
Author(s):  
Ildikó Maňková ◽  
Marek Vrabeľ ◽  
Jozef Beňo ◽  
Mária Franková

Experimental research and modeling in the field of turning hardened bearing steel with hardness of 62 HRC using TiN coated mixed oxide ceramic inserts is presented. The main objective of the article is investigation the relationship between cutting parameters (cutting speed and feed rate) and output machining variables (surface roughness and cutting force components) through the response surface methodology (RSM). The mathematical model of the effect of process parameters on the cutting force components and surface roughness is presented. Moreover, the influence of TiN coating on above mentioned variables was monitored. The design of experiment according to Taguchi L9 orthogonal matrix (32) was applied for trials. Pearson´s correlation matrix was used to examine the dependence between the factors (f, vc) and the machining variables (surface roughness and cutting force components). The results show how much surface roughness and cutting force components is influenced by cutting speed and feed in hard turning with coated ceramics.


Author(s):  
Jian-wei Ma ◽  
Zhen-yuan Jia ◽  
Guang-zhi He ◽  
Zhen Liu ◽  
Xiao-xuan Zhao ◽  
...  

High-speed machining provides an efficient approach for machining Inconel 718 with high quality and high efficiency. For high-speed milling of Inconel 718 curved surface, the geometrical characteristics are changing continuously leading to a sharp fluctuation of cutting force, which will aggravate the tool wear. As the wear mechanism of coated cutting tool is seriously affected by the cutting tool geometrical parameters, suitable geometrical parameters of cutting tool should be selected to avoid the cutting tool from being worn out very quickly. In this study, the influence of cutting tool geometrical parameters on tool wear in high-speed milling of Inconel 718 curved surface is investigated with coated cutting tool, and the cutting force in milling process is also analyzed. The results show that the cutting force variation can manifest the tool wear degree, and the failure type of coated cutting tool in plane milling and curved surface milling after the same cutting length is different. Furthermore, the cutting tool geometrical parameters seriously affect the tool wear and the tool life in high-speed milling of Inconel 718 curved surface. Concretely, the small rake angle has greater strength and has superiority, the relief angle increasing can enhance the tool life, and the tool life is decreased with the increasing of helix angle for the cutting tool, whose helix angle is larger than 30°. This study provides a theoretical basis for cutting tool wear mechanism and cutting tool geometrical parameter selection in high-speed milling of Inconel 718 curved surface, so as to guarantee the machining efficiency in high-speed milling of Inconel 718 curved surface.


Sign in / Sign up

Export Citation Format

Share Document