scholarly journals Transcriptomic analysis of small intestinal mucosa from porcine epidemic diarrhea virus infected piglets

2019 ◽  
Vol 132 ◽  
pp. 73-79 ◽  
Author(s):  
Pei Sun ◽  
Qarih Fahd ◽  
Yezhen Li ◽  
Yao Sun ◽  
Jie Li ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kepalee Saeng-chuto ◽  
Adthakorn Madapong ◽  
Kampon Kaeoket ◽  
Pablo Enrique Piñeyro ◽  
Angkana Tantituvanont ◽  
...  

AbstractPorcine epidemic diarrhea virus (PEDV) and porcine deltacoronavirus (PDCoV) cause an enteric disease characterized by diarrhea clinically indistinguishable. Both viruses are simultaneously detected in clinical cases, but a study involving the co-infection has not been reported. The study was therefore conducted to investigate the disease severity following a co-infection with PEDV and PDCoV. In the study, 4-day-old pigs were orally inoculated with PEDV and PDCoV, either alone or in combination. Following challenge, fecal score was monitored on a daily basis. Fecal swabs were collected and assayed for the presence of viruses. Three pigs per group were necropsied at 3 and 5 days post inoculation (dpi). Microscopic lesions and villous height to crypt depth (VH:CD) ratio, together with the presence of PEDV and PDCoV antigens, were evaluated in small intestinal tissues. Expressions of interferon alpha (IFN-α) and interleukin 12 (IL12) were investigated in small intestinal mucosa. The findings indicated that coinoculation increased the disease severity, demonstrated by significantly prolonged fecal score and virus shedding and decreasing VH:CD ratio in the jejunum compared with pigs inoculated with either PEDV or PDCoV alone. Notably, in single-inoculated groups, PEDV and PDCoV antigens were detected only in villous enterocytes wile in the coinoculated group, PDCoV antigen was detected in both villous enterocytes and crypts. IFN-α and IL12 were significantly up-regulated in coinoculated groups in comparison with single-inoculated groups. In conclusion, co-infection with PEDV and PDCoV exacerbate clinical signs and have a synergetic on the regulatory effect inflammatory cytokines compared to a single infection with either virus.


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 644
Author(s):  
Yajing Zhou ◽  
Zhanshi Ren ◽  
Shuai Zhang ◽  
Haifei Wang ◽  
Shenglong Wu ◽  
...  

Porcine epidemic diarrhea virus (PEDV) infects intestinal epithelial cells, destroys the intestinal mucosal barrier and then causes diarrhea in piglets. Glucagon-like peptide-2 (GLP-2) is a specific intestinal growth hormone that promotes the repair of damaged intestinal mucosa and improves the intestinal barrier. In this study, we investigated the functions of porcine GLP-2 gene in regulating PEDV infection. The intestinal tissues with damaged intestinal structures caused by PEDV infection were first confirmed and collected. Expression analysis indicated that the GLP-2 gene was expressed in the duodenum, jejunum and ileum tissues, and the mRNA level was significantly down-regulated in jejunum and ileum of piglets with damaged intestinal mucosa. Infection of PEDV to porcine small intestinal epithelial cells in vitro showed that GLP-2 gene was significantly decreased, which was consistent with the expression pattern in intestinal tissues. In addition, we silenced the GLP-2 gene by shRNA interfering and found that the copy numbers of PEDV were remarkably increased in the GLP-2 gene silencing cells. Our findings suggest that the GLP-2 gene was potentially involved in regulating PEDV infection and in maintaining the integrity of the intestinal mucosal barrier structure, which could contribute to our understanding of the mechanisms of PEDV pathogenesis and provide a theoretical basis for the identification and application of resistant genes in pig selective breeding for porcine epidemic diarrhea.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Gustavo Machado ◽  
Carles Vilalta ◽  
Mariana Recamonde-Mendoza ◽  
Cesar Corzo ◽  
Montserrat Torremorell ◽  
...  

2009 ◽  
Vol 102 (9) ◽  
pp. 1285-1296 ◽  
Author(s):  
Maud Le Gall ◽  
Mélanie Gallois ◽  
Bernard Sève ◽  
Isabelle Louveau ◽  
Jens J. Holst ◽  
...  

Sodium butyrate (SB) provided orally favours body growth and maturation of the gastrointestinal tract (GIT) in milk-fed pigs. In weaned pigs, conflicting results have been obtained. Therefore, we hypothesised that the effects of SB (3 g/kg DM intake) depend on the period (before v. after weaning) of its oral administration. From the age of 5 d, thirty-two pigs, blocked in quadruplicates within litters, were assigned to one of four treatments: no SB (control), SB before (for 24 d), or after (for 11–12 d) weaning and SB before and after weaning (for 35–36 d). Growth performance, feed intake and various end-point indices of GIT anatomy and physiology were investigated at slaughter. The pigs supplemented with SB before weaning grew faster after weaning than the controls (P < 0·05). The feed intake was higher in pigs supplemented with SB before or after weaning (P < 0·05). SB provided before weaning improved post-weaning faecal digestibility (P < 0·05) while SB after weaning decreased ileal and faecal digestibilities (P < 0·05). Gastric digesta retention was higher when SB was provided before weaning (P < 0·05). Post-weaning administration of SB decreased the activity of three pancreatic enzymes and five intestinal enzymes (P < 0·05). IL-18 gene expression tended to be lower in the mid-jejunum in SB-supplemented pigs. The small-intestinal mucosa was thinner and jejunal villous height lower in all SB groups (P < 0·05). In conclusion, the pre-weaning SB supplementation was the most efficient to stimulate body growth and feed intake after weaning, by reducing gastric emptying and intestinal mucosa weight and by increasing feed digestibility.


2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 216-217
Author(s):  
O L Harrison ◽  
G E Nichols ◽  
J T Gebhardt ◽  
Cassandra K Jones ◽  
Jason C Woodworth ◽  
...  

Abstract Recent research has demonstrated that swine viruses can be transmitted via feed. Chemical feed additives have been suggested for the mitigation of these viruses in complete feed. Therefore, the objective of this study was to evaluate the efficacy of a commercially available formaldehyde-based feed additive, medium chain fatty acid blend (MCFA), and commercially available fatty acid-based products for mitigation of porcine epidemic diarrhea virus (PEDV) and porcine reproductive and respiratory syndrome virus (PRRSV) in a feed matrix. Treatments consisted of: 1) non-treated positive control, 2) 0.33% commercial formaldehyde-based product (Sal Curb; Kemin Industries, Inc.; Des Moines, IA), 3) 0.5% MCFA blend (1:1:1 ratio of C6:0, C8:0, and C10:0, Sigma Aldrich, St. Louis, MO), 4) 0.25%, 5) 0.5%, or 6) 1% of commercial dry mono and diglyceride-based product (Furst Strike; Furst-McNess Company, Freeport, IL), 7) 0.25%, 8) 0.5%, or 9) 1% of commercial dry mono and diglyceride-based product (Furst Protect; Furst-McNess Company, Freeport, IL), 10) 0.25%, 11) 0.5%, or 12) 1% dry mono and diglyceride-based experimental product (Furst-McNess Company, Freeport, IL) with 3 replications/treatment. Treatments were applied to complete swine feed before inoculation with 106 TCID50/g of feed with PEDV or PRRSV. Post inoculation feed was held at ambient temperature for 24 h before being analyzed via qRT-PCR. The analyzed values represent the cycle threshold. Formaldehyde and MCFA decreased (P &lt; 0.05) the detectable RNA of PEDV and PRRSV compared to all other treatments. Furst Strike, Furst Protect, and the experimental product did not significantly impact detectability of PEDV or PRRSV RNA. In conclusion, MCFA and formaldehyde treatments are effective at reducing detection of RNA from PEDV and PRRSV in feed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaoqian Zhang ◽  
Chang Li ◽  
Bingzhou Zhang ◽  
Zhonghua Li ◽  
Wei Zeng ◽  
...  

AbstractThe variant virulent porcine epidemic diarrhea virus (PEDV) strain (YN15) can cause severe porcine epidemic diarrhea (PED); however, the attenuated vaccine-like PEDV strain (YN144) can induce immunity in piglets. To investigate the differences in pathogenesis and epigenetic mechanisms between the two strains, differential expression and correlation analyses of the microRNA (miRNA) and mRNA in swine testicular (ST) cells infected with YN15, YN144, and mock were performed on three comparison groups (YN15 vs Control, YN144 vs Control, and YN15 vs YN144). The mRNA and miRNA expression profiles were obtained using next-generation sequencing (NGS), and the differentially expressed (DE) (p-value < 0.05) mRNA and miRNA were obtained using DESeq R package. mRNAs targeted by DE miRNAs were predicted using the miRanda algortithm. 8039, 8631 and 3310 DE mRNAs, and 36, 36, and 22 DE miRNAs were identified in the three comparison groups, respectively. 14,140, 15,367 and 3771 DE miRNA–mRNA (targeted by DE miRNAs) interaction pairs with negatively correlated expression patterns were identified, and interaction networks were constructed using Cytoscape. Six DE miRNAs and six DE mRNAs were randomly selected to verify the sequencing data by real-time relative quantitative reverse transcription polymerase chain reaction (qRT-PCR). Based on bioinformatics analysis, we discovered the differences were mostly involved in host immune responses and viral pathogenicity, including NF-κB signaling pathway and bacterial invasion of epithelial cells, etc. This is the first comprehensive comparison of DE miRNA–mRNA pairs in YN15 and YN144 infection in vitro, which could provide novel strategies for the prevention and control of PED.


Sign in / Sign up

Export Citation Format

Share Document