scholarly journals Magnetic field imaging and light induced capacitance alteration for failure analysis of Cu-TSV interconnects

2020 ◽  
Vol 114 ◽  
pp. 113780
Author(s):  
Ingrid De Wolf ◽  
Kristof J.P. Jacobs ◽  
Antonio Orozco
Author(s):  
K. Sanchez ◽  
G. Bascoul ◽  
F. Infante ◽  
N. Courjault ◽  
T. Nakamura

Abstract Magnetic field imaging is a well-known technique which gives the possibility to study the internal activity of electronic components in a contactless and non-invasive way. Additional data processing can convert the magnetic field image into a current path and give the possibility to identify current flow anomalies in electronic devices. This technique can be applied at board level or device level and is particularly suitable for the failure analysis of complex packages (stacked device & 3D packaging). This approach can be combined with thermal imaging, X-ray observation and other failure analysis tool. This paper will present two different techniques which give the possibility to measure the magnetic field in two dimensions over an active device. Same device and same level of current is used for the two techniques to give the possibility to compare the performance.


2018 ◽  
Author(s):  
Antonio Orozco ◽  
Elena Talanova ◽  
Alex Jeffers ◽  
Florencia Rusli ◽  
Bernice Zee ◽  
...  

Abstract Industry and market requirements keep imposing demands in terms of tighter transistor packing, die and component real estate management on the package, faster connections and expanding functionality. This has forced the semiconductor industry to look for novel packaging approaches to allow for 3D stacking of transistors (the so called “More than Moore”). This complex 3D geometry, with an abundance of opaque layers and interconnects, presents a great challenge for failure analysis (FA). Three-dimensional (3D) magnetic field imaging (MFI) has proven to be a natural, useful technique for non-destructively mapping 3D current paths in devices that allows for submicron vertical resolution. 3D X-ray microscopy (XRM) enables 3D tomographic imaging of advanced IC packages without the need to destroy the device. This is because it employs both geometric and optical image magnifications to achieve high spatial resolution. In this paper, we propose a fully nondestructive, 3D-capable workflow for FA comprising 3D MFI and 3D XRM. We present an application of this novel workflow to 3D defect localization in a complex 2.5D device combining high bandwidth memory (HBM) devices and an application specific integrated circuit (ASIC) unit on a Si interposer with a signal pin electrical short failure.


2021 ◽  
Vol 11 (17) ◽  
pp. 8148
Author(s):  
Yuan Chen ◽  
Ping Lai ◽  
Hong-Zhong Huang ◽  
Peng Zhang ◽  
Xiaoling Lin

With the development of 3D integrated packaging technology, failure analysis is facing more and more challenges. Defect localization in a 3D package is a key step of failure analysis. The complex structure and materials of 3D package devices demand non-destructive defect localization technology for full packages. Magnetic field imaging and three-dimensional X-ray technology are not affected by package material or form. They are effective methods to realize defect localization on 3D packages. In this paper, magnetic field imaging and high-resolution three-dimensional X-ray microscopy were used to localize the open defect in a 3D package with a TSV daisy chain. A two-probe RF method in magnetic field imaging was performed to resolve isolation of the defect difficulties resulting from many different branches of TSV daisy chains. Additionally, a linear decay method was used to target sub-micron resolution at a long working distance. Multiple partition scans from a high-resolution 3D X-ray microscopy with a two-stage magnification structure were used to achieve sub-micron resolution. The open location identified by magnetic field imaging was consistent with that identified by a three-dimensional X-ray microscope. The opening was located on the top metal in the proximity of the fifth via. Physical failure analysis revealed the presence of a crack in the top metal at the opening location.


Author(s):  
A. Orozco ◽  
N.E. Gagliolo ◽  
C. Rowlett ◽  
E. Wong ◽  
A. Moghe ◽  
...  

Abstract The need to increase transistor packing density beyond Moore's Law and the need for expanding functionality, realestate management and faster connections has pushed the industry to develop complex 3D package technology which includes System-in-Package (SiP), wafer-level packaging, through-silicon-vias (TSV), stacked-die and flex packages. These stacks of microchips, metal layers and transistors have caused major challenges for existing Fault Isolation (FI) techniques and require novel non-destructive, true 3D Failure Localization techniques. We describe in this paper innovations in Magnetic Field Imaging for FI that allow current 3D mapping and extraction of geometrical information about current location for non-destructive fault isolation at every chip level in a 3D stack.


2021 ◽  
Vol 92 (3) ◽  
pp. 035113
Author(s):  
Huan Liu ◽  
Changfeng Zhao ◽  
Xiaobin Wang ◽  
Zehua Wang ◽  
Jian Ge ◽  
...  

2017 ◽  
Vol 862 ◽  
pp. 012008 ◽  
Author(s):  
K Hiroi ◽  
T Shinohara ◽  
H Hayashida ◽  
J D Parker ◽  
K Oikawa ◽  
...  

2019 ◽  
Author(s):  
Ulli Zeller ◽  
Dominik Lausch ◽  
Matthias Pander ◽  
Kai Kaufmann ◽  
Sebastian Slaby ◽  
...  

Author(s):  
Kai Kaufmann ◽  
Dominik Lausch ◽  
Chia-Mei Lin ◽  
Maik Rudolph ◽  
Daniel Hahn ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document