scholarly journals A New Link in the Chain from Amino Acids to mTORC1 Activation

2011 ◽  
Vol 44 (1) ◽  
pp. 7-8 ◽  
Author(s):  
Chris G. Proud
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Dany Khamsing ◽  
Solène Lebrun ◽  
Isabelle Fanget ◽  
Nathanaël Larochette ◽  
Christophe Tourain ◽  
...  

AbstractMemory and long term potentiation require de novo protein synthesis. A key regulator of this process is mTORC1, a complex comprising the mTOR kinase. Growth factors activate mTORC1 via a pathway involving PI3-kinase, Akt, the TSC complex and the GTPase Rheb. In non-neuronal cells, translocation of mTORC1 to late endocytic compartments (LEs), where Rheb is enriched, is triggered by amino acids. However, the regulation of mTORC1 in neurons remains unclear. In mouse hippocampal neurons, we observed that BDNF and treatments activating NMDA receptors trigger a robust increase in mTORC1 activity. NMDA receptors activation induced a significant recruitment of mTOR onto lysosomes even in the absence of external amino acids, whereas mTORC1 was evenly distributed in neurons under resting conditions. NMDA receptor-induced mTOR translocation to LEs was partly dependent on the BDNF receptor TrkB, suggesting that BDNF contributes to the effect of NMDA receptors on mTORC1 translocation. In addition, the combination of Rheb overexpression and artificial mTORC1 targeting to LEs by means of a modified component of mTORC1 fused with a LE-targeting motif strongly activated mTOR. To gain spatial and temporal control over mTOR localization, we designed an optogenetic module based on light-sensitive dimerizers able to recruit mTOR on LEs. In cells expressing this optogenetic tool, mTOR was translocated to LEs upon photoactivation. In the absence of growth factor, this was not sufficient to activate mTORC1. In contrast, mTORC1 was potently activated by a combination of BDNF and photoactivation. The data demonstrate that two important triggers of synaptic plasticity, BDNF and NMDA receptors, synergistically power the two arms of the mTORC1 activation mechanism, i.e., mTORC1 translocation to LEs and Rheb activation. Moreover, they unmask a functional link between NMDA receptors and mTORC1 that could underlie the changes in the synaptic proteome associated with long-lasting changes in synaptic strength.


2019 ◽  
Vol 150 (5) ◽  
pp. 1022-1030 ◽  
Author(s):  
Dandan Xu ◽  
Weiwei Dai ◽  
Lydia Kutzler ◽  
Holly A Lacko ◽  
Leonard S Jefferson ◽  
...  

ABSTRACT Background The protein kinase target of rapamycin (mTOR) in complex 1 (mTORC1) is activated by amino acids and in turn upregulates anabolic processes. Under nutrient-deficient conditions, e.g., amino acid insufficiency, mTORC1 activity is suppressed and autophagy is activated. Intralysosomal amino acids generated by autophagy reactivate mTORC1. However, sustained mTORC1 activation during periods of nutrient insufficiency would likely be detrimental to cellular homeostasis. Thus, mechanisms must exist to prevent amino acids released by autophagy from reactivating the kinase. Objective The objective of the present study was to test whether mTORC1 activity is inhibited during prolonged leucine deprivation through ATF4-dependent upregulation of the mTORC1 suppressors regulated in development and DNA damage response 1 (REDD1) and Sestrin2. Methods Mice (8 wk old; C57Bl/6 × 129SvEV) were food deprived (FD) overnight and one-half were refed the next morning. Mouse embryo fibroblasts (MEFs) deficient in ATF4, REDD1, and/or Sestrin2 were deprived of leucine for 0–16 h. mTORC1 activity and ATF4, REDD1, and Sestrin2 expression were assessed in liver and cell lysates. Results Refeeding FD mice resulted in activation of mTORC1 in association with suppressed expression of both REDD1 and Sestrin2 in the liver. In cells in culture, mTORC1 exhibited a triphasic response to leucine deprivation, with an initial suppression followed by a transient reactivation from 2 to 4 h and a subsequent resuppression after 8 h. Resuppression occurred concomitantly with upregulated expression of ATF4, REDD1, and Sestrin2. However, in cells lacking ATF4, neither REDD1 nor Sestrin2 expression was upregulated by leucine deprivation, and resuppression of mTORC1 was absent. Moreover, in cells lacking either REDD1 or Sestrin2, mTORC1 resuppression was attenuated, and in cells lacking both proteins resuppression was further blunted. Conclusions The results suggest that leucine deprivation upregulates expression of both REDD1 and Sestrin2 in an ATF4-dependent manner, and that upregulated expression of both proteins is involved in resuppression of mTORC1 during prolonged leucine deprivation.


2018 ◽  
Author(s):  
Ma Jinming ◽  
Hsiang-Ting Lei ◽  
Tamir Gonen

AbstractmTORC1 is a central signal hub that integrates multiple environmental cues, such as cellular stresses, energy levels, nutrients and certain amino acids, to modulate metabolic status and cellular responses. Recently, SLC38A9, a lysosomal amino acid transporter, has emerged as a sensor for luminal arginine levels and as an activator of mTOCRC1. The activation of mTORC1 occurs through the N-terminal domain of SLC38A9. Here, we determined the crystal structure of SLC38A9 and surprisingly found its N-terminal fragment inserted deep into the transporter, bound in the substrate binding pocket where normally arginine would bind. Compared with our recent arginine bound structure of SLC38A9, a significant conformational change of the N-terminal domain was observed. A ball-and-chain model is proposed for mTORC1 activation where in the starved state the N-terminal domain of SLC38A9 is buried deep in the transporter but in the fed state the N-terminal domain could be released becoming free to bind the Rag GTPase complex and to activate mTORC1. This work provides important new insights into how SLC38A9 senses the fed state and activates the mTORC1 pathways in response to dietary amino acids.One Sentence SummaryN-plug inserted state of SLC38A9 reveals mechanisms of mTORC1 activation and arginine-enhanced luminal amino acids efflux.


Science ◽  
2020 ◽  
Vol 370 (6514) ◽  
pp. 351-356
Author(s):  
Geoffrey G. Hesketh ◽  
Fotini Papazotos ◽  
Judy Pawling ◽  
Dushyandi Rajendran ◽  
James D. R. Knight ◽  
...  

The mechanistic target of rapamycin complex 1 (mTORC1) couples nutrient sufficiency to cell growth. mTORC1 is activated by exogenously acquired amino acids sensed through the GATOR–Rag guanosine triphosphatase (GTPase) pathway, or by amino acids derived through lysosomal degradation of protein by a poorly defined mechanism. Here, we revealed that amino acids derived from the degradation of protein (acquired through oncogenic Ras-driven macropinocytosis) activate mTORC1 by a Rag GTPase–independent mechanism. mTORC1 stimulation through this pathway required the HOPS complex and was negatively regulated by activation of the GATOR-Rag GTPase pathway. Therefore, distinct but functionally coordinated pathways control mTORC1 activity on late endocytic organelles in response to distinct sources of amino acids.


2020 ◽  
Vol 319 (3) ◽  
pp. C561-C568
Author(s):  
Sidney Abou Sawan ◽  
Michael Mazzulla ◽  
Daniel R. Moore ◽  
Nathan Hodson

Skeletal muscle is a highly plastic tissue capable of remodeling in response to a range of physiological stimuli, including nutrients and exercise. Historically, the lysosome has been considered an essentially catabolic organelle contributing to autophagy, phagocytosis, and exo-/endocytosis in skeletal muscle. However, recent evidence has emerged of several anabolic roles for the lysosome, including the requirement for autophagy in skeletal muscle mass maintenance, the discovery of the lysosome as an intracellular signaling hub for mechanistic target of rapamycin complex 1 (mTORC1) activation, and the importance of transcription factor EB/lysosomal biogenesis-related signaling in the regulation of mTORC1-mediated protein synthesis. We, therefore, propose that the lysosome is an understudied organelle with the potential to underpin the skeletal muscle adaptive response to anabolic stimuli. Within this review, we describe the molecular regulation of lysosome biogenesis and detail the emerging anabolic roles of the lysosome in skeletal muscle with particular emphasis on how these roles may mediate adaptations to chronic resistance exercise. Furthermore, given the well-established role of amino acids to support muscle protein remodeling, we describe how dietary proteins “labeled” with stable isotopes could provide a complementary research tool to better understand how lysosomal biogenesis, autophagy regulation, and/or mTORC1-lysosomal repositioning can mediate the intracellular usage of dietary amino acids in response to anabolic stimuli. Finally, we provide avenues for future research with the aim of elucidating how the regulation of this important organelle could mediate skeletal muscle anabolism.


2013 ◽  
Vol 41 (4) ◽  
pp. 951-955 ◽  
Author(s):  
Marlous J. Groenewoud ◽  
Fried J.T. Zwartkruis

mTORC1 (mammalian target of rampamycin complex 1) is a highly conserved protein complex regulating cell growth and metabolism via its kinase mTOR (mammalian target of rapamycin). The activity of mTOR is under the control of various GTPases, of which Rheb and the Rags play a central role. The presence of amino acids is a strict requirement for mTORC1 activity. The heterodimeric Rag GTPases localize mTORC1 to lysosomes by their amino-acid-dependent interaction with the lysosomal Ragulator complex. Rheb is also thought to reside on lysosomes to activate mTORC1. Rheb is responsive to growth factors, but, in conjunction with PLD1 (phospholipase D1), is also an integral part of the machinery that stimulates mTORC1 in response to amino acids. In the present article, we provide a brief overview of novel mechanisms by which amino acids affect the function of Rags. On the basis of existing literature, we postulate that Rheb is activated at the Golgi from where it will travel to lysosomes. Maturation of endosomes into lysosomes may be required to assure a continuous supply of GTP-bound Rheb for mTORC1 activation, which may help to drive the maturation process.


2021 ◽  
Vol 22 (13) ◽  
pp. 6897
Author(s):  
Yuna Amemiya ◽  
Nao Nakamura ◽  
Nao Ikeda ◽  
Risa Sugiyama ◽  
Chiaki Ishii ◽  
...  

Mechanistic target of rapamycin complex 1 (mTORC1) is a master growth regulator by controlling protein synthesis and autophagy in response to environmental cues. Amino acids, especially leucine and arginine, are known to be important activators of mTORC1 and to promote lysosomal translocation of mTORC1, where mTORC1 is thought to make contact with its activator Rheb GTPase. Although amino acids are believed to exclusively regulate lysosomal translocation of mTORC1 by Rag GTPases, how amino acids increase mTORC1 activity besides regulation of mTORC1 subcellular localization remains largely unclear. Here we report that amino acids also converge on regulation of the TSC2-Rheb GTPase axis via Ca2+/calmodulin (CaM). We showed that the amino acid-mediated increase of intracellular Ca2+ is important for mTORC1 activation and thereby contributes to the promotion of nascent protein synthesis. We found that Ca2+/CaM interacted with TSC2 at its GTPase activating protein (GAP) domain and that a CaM inhibitor reduced binding of CaM with TSC2. The inhibitory effect of a CaM inhibitor on mTORC1 activity was prevented by loss of TSC2 or by an active mutant of Rheb GTPase, suggesting that a CaM inhibitor acts through the TSC2-Rheb axis to inhibit mTORC1 activity. Taken together, in response to amino acids, Ca2+/CaM-mediated regulation of the TSC2-Rheb axis contributes to proper mTORC1 activation, in addition to the well-known lysosomal translocation of mTORC1 by Rag GTPases.


Sign in / Sign up

Export Citation Format

Share Document