Toll like receptor (2 and 4) expression and cytokine release by human neutrophils during tuberculosis treatment—A longitudinal study

2021 ◽  
Vol 140 ◽  
pp. 136-143
Author(s):  
Nancy Hilda J ◽  
Lucia Precilla K ◽  
Anbalagan Selvaraj ◽  
Saravanan Chinnaraj ◽  
Hanna Luke Elizabeth
2011 ◽  
Vol 13 (1) ◽  
Author(s):  
Sinéad Nic An Ultaigh ◽  
Tajvur P Saber ◽  
Jennifer McCormick ◽  
Mary Connolly ◽  
Jerome Dellacasagrande ◽  
...  

2003 ◽  
Vol 10 (3) ◽  
pp. 485-488 ◽  
Author(s):  
Eva Mattsson ◽  
Terese Persson ◽  
Pia Andersson ◽  
Jan Rollof ◽  
Arne Egesten

ABSTRACT Peptidoglycan from Staphylococcus aureus mobilized CD66b in human neutrophils but did not upregulate surface activation markers in eosinophils. In addition, Toll-like receptor 2, implicated in the recognition of peptidoglycan, was detected on the surface of resting neutrophils but not on eosinophils. These findings suggest roles for neutrophils but not eosinophils in innate recognition of peptidoglycan.


2005 ◽  
Vol 73 (11) ◽  
pp. 7613-7619 ◽  
Author(s):  
J. S. Hadley ◽  
J. E. Wang ◽  
S. J. Foster ◽  
C. Thiemermann ◽  
C. J. Hinds

ABSTRACT Previous studies have indicated that peptidoglycan (PepG) from gram-positive bacteria can exert a priming effect on the innate immune response to lipopolysaccharide (LPS) from gram-negative bacteria. Here, we hypothesized that this priming effect may be preceded by enhanced expression of monocyte CD14, Toll-like receptor 2 (TLR2), and TLR4. In an ex vivo whole human blood model, we observed a substantial synergy between LPS and PepG in the release of tumor necrosis factor alpha and interleukin-1β (IL-1β) over the 24-h experimental period, whereas the effect on IL-8 and IL-10 release was more time dependent. The priming effect of PepG on cytokine release was preceded by a rapid upregulation of CD14, TLR2, and TLR4 expression on monocytes: at 3 hours there was a twofold increase in CD14 expression (P < 0.03), a fivefold increase in TLR2 expression (P < 0.03), and a twofold increase in TLR4 expression (P < 0.03). CD14 and TLR2 remained upregulated throughout the experimental period following exposure to PepG (P < 0.05). Only a transient upregulation of these monocyte receptors was observed following treatment with LPS or LPS plus PepG. In conclusion, the synergistic effect of LPS and PepG on cytokine release is preceded by a reciprocal upregulation of TLR2 and TLR4 by both bacterial cell wall components.


2005 ◽  
Vol 73 (3) ◽  
pp. 1343-1349 ◽  
Author(s):  
George Hajishengallis ◽  
Richard I. Tapping ◽  
Michael H. Martin ◽  
Hesham Nawar ◽  
Elizabeth A. Lyle ◽  
...  

ABSTRACT The type II heat-labile enterotoxins (LT-IIa and LT-IIb) of Escherichia coli have an AB5 subunit structure similar to that of cholera toxin (CT) and other type I enterotoxins, despite significant differences in the amino acid sequences of their B subunits and different ganglioside receptor specificities. LT-II holotoxins and their nontoxic B subunits display unique properties as immunological adjuvants distinct from those of CT and its B subunits. In contrast to type II holotoxins, the corresponding pentameric B subunits, LT-IIaB and LT-IIbB, stimulated cytokine release in both human and mouse cells dependent upon Toll-like receptor 2 (TLR2). Induction of interleukin-1β (IL-1β), IL-6, IL-8, or tumor necrosis factor alpha in human THP-1 cells by LT-IIaB or LT-IIbB was inhibited by anti-TLR2 but not by anti-TLR4 antibody. Furthermore, transient expression of TLR1 and TLR2 in human embryonic kidney 293 cells resulted in activation of a nuclear factor-κB-dependent luciferase gene in response to LT-IIaB or LT-IIbB. Moreover, peritoneal macrophages from TLR2-deficient mice failed to respond to LT-IIaB or LT-IIbB, in contrast to wild-type or TLR4-deficient cells. These results demonstrate that besides their established binding to gangliosides, the B subunits of type II enterotoxins also interact with TLR2. Although a ganglioside-nonbinding mutant (T34I) of LT-IIaB effectively induced cytokine release, a phenotypically similar point mutation (T13I) in LT-IIbB abrogated cytokine induction, suggesting a variable requirement for gangliosides as coreceptors in TLR2 agonist activity. TLR2-dependent activation of mononuclear cells by type II enterotoxin B subunits appears to be a novel mechanism whereby these molecules may exert their immunomodulatory and adjuvant activities.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1473-1473 ◽  
Author(s):  
Tammi Taylor ◽  
Young-June Kim ◽  
Wilbert Derbigny ◽  
Xuan Ou ◽  
Hal E. Broxmeyer

Abstract Abstract 1473 Poster Board I-496 Mouse embryonic stem cells (mESCs) are unique in that they give rise to every cell type of the body. Little is known about stimuli that promote mESC differentiation and proliferation. We hypothesized that TLRs are expressed and functional, and when activated by its ligand will influence survival and proliferation of mESCs in the presence of Leukemia Inhibitory Factor (LIF). This study evaluated three mESC lines, R1, CGR8, and E14 to first determine if they express Toll Like Receptors (TLRs) at mRNA and protein levels. Next, we evaluated if the TLR ligands would induce or modulate mESC proliferation and survival of the mESCs in the presence of LIF. We then assessed the E14 mESC line to determine if the mESCs expressed MyD88 an adaptor protein molecule, known to be involved in the TLR pathway and if the TLR ligands would cause inhibitor of kinase kinase alpha/ beta (IKKα/β) phosphorylation and nuclear factor-kappa beta (NF-κβ) nuclear translocation, and cytokine production. In this study we found expression of TLRs 1, 2, 3, 5 and 6 at the mRNA level, but no mRNA expression of TLRs 4, 7, 8 and 9. We also confirmed some of these results by flow analysis. Toll Like Receptor 2 (TLR-2), but not Toll Like Receptor 4 (TLR-4), is expressed on the three mESC lines. Therefore we focused our studies on TLR-2, specifically. Pam3Cys, a synthetic triacyl-lipoprotein and a TLR-2 ligand induced a significant increase in mESC numbers on Day 3 compared to controls and also at Day 4 and Day 5 when compared to controls. Pam3Cys (10ug/ml) also enhanced the survival of mESC colony forming cells subjected to serum withdrawal and then delayed addition of serum. Next we found that E14 mESCs express molecules involved in the TLR Pathway. MyD88 was expressed in mESCs and IKKα/β phosphorylation was enhanced after 15 minute by TLR-2 ligand activation. We found a significant increase of NF-κβ nuclear translocation upon activation by Pam3Cys after 30 minutes which continued for up to an hour. Densitometry analysis of the nuclear extracts from three separate experiments shows a significant 2 fold increase in NF-κβ in the nucleus compared to control mESC nuclear extracts. Since TLR activation of leukocytes enhances cytokine production, and our group has published that mESCs produce cytokines, we studied the effect of Pam3Cys on release of cytokine from our mESC line. Cytokine release in mESCs by TLR-ligand activation was assessed by ELISA, but TLR-2 ligand stimulation did not affect cytokine release of IL-6, TNF-α, or INF-β. We found that there were no significant changes in expression of mESCs markers Oct4, KLF-4, Sox 2, and SSEA1 when compared to cells not activated by Pam3Cys. Thus the mESCs remained in a pluripotent state in the presence of LIF after activation with the TLR-2 ligand. These results demonstrate that mESCs can respond to microbial products, and TLR-2 activation enhances proliferation and survival of the mESCs. This finding expands the role of TLRs and has implications for a better understanding of the responsiveness of embryonic stem cells to certain microbial agents. Disclosures: No relevant conflicts of interest to declare.


2011 ◽  
Vol 140 (5) ◽  
pp. S-839
Author(s):  
Orlaith B. Kelly ◽  
Siobhan Smith ◽  
Caroline Jefferies ◽  
Stephen J. Keely

2001 ◽  
Vol 120 (5) ◽  
pp. A357-A357
Author(s):  
H SHIMIZU ◽  
Y FUKUDA ◽  
I NAKANO ◽  
Y KATANO ◽  
K NAGANO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document