Development of back-extraction recyclability of IL-ATPS for the efficient recovery of syringic and caffeic acid

2021 ◽  
Vol 328 ◽  
pp. 115390
Author(s):  
Mo Li ◽  
Xiaojie Yu ◽  
Cunshan Zhou ◽  
Abu ElGasim A. Yagoub ◽  
Yanhui Sun ◽  
...  
Author(s):  
Valeria Pittala ◽  
Luca Vanella ◽  
Loredana Salerno ◽  
Claudia Di Giacomo ◽  
Rosaria Acquaviva ◽  
...  

2018 ◽  
Vol 15 (1) ◽  
pp. 11-20 ◽  
Author(s):  
Maria A. Morosanova ◽  
Anton S. Fedorov ◽  
Elena I. Morosanova

Background: The consumption of antioxidants, including phenolic compounds, is considered important for preventing the oxidative damage diseases and ageing. The total polyphenol content (TPC) is the parameter used to estimate the quality of plant-derived products. Methods: Phenol oxidase activity of green bean (Phaseolus vulgaris) crude extract (in the presence of hydrogen peroxide) and banana (Musa sp.) pulp crude extract has been studied spectrophotometrically using catechol, gallic acid, caffeic acid, ferulic acid, and quercetin as substrates. All studied compounds have been oxidized in the presence of green bean crude extract and hydrogen peroxide; all studied compounds except ferulic acid have been oxidized in the presence of banana pulp crude extract. Michaelis constants (Km) and maximum reaction rates (Vmax) have been determined for oxidation in the presence of green bean crude extract and hydrogen peroxide (Km are 3.8×10-4 M, 1.6×10-3 M, 2.2×10-4 M, 2.3×10-4 M, 1.4×10-4 M and Vmax are 0.046 min-1, 0.102 min-1, 0.185 min-1, 0.053 min-1, 0.041 min-1 for catechol, gallic acid, caffeic acid, ferulic acid, and quercetin, respectively) and for oxidation in the presence of banana pulp crude extract (Km are 1.6×10-3 M, 3.8×10-3 M, 2.2×10-3 M, 4.2×10-4 M and Vmax are 0.058 min-1, 0.025 min-1, 0.027 min-1, 0.015 min-1 for catechol, gallic acid, caffeic acid, and quercetin, respectively). The influence of 3-methyl-2-benzothiazolinone hydrazone (MBTH) on the oxidation reactions kinetics has been studied: Michaelis constants values decrease and maximum reaction rates increase, which contributes to the increase in sensitivity of the determination. Results: Kinetic procedures of Total Polyphenol Content (TPC) determination using crude plants extracts in the presence of MBTH have been proposed (time of analysis is 1 min). For gallic acid (used as a standard for TPC determination) detection limit is 5.3×10-5 M, quantitation limit is 1.8×10-4 M, and linear range is 1.8×10-4 - 1.3×10-3 M for green bean crude extract; detection limit is 2.9×10-5 M, quantitation limit is 9.5×10-5 M, and linear range is 9.5×10-5 - 2.4×10-3 M for banana pulp crude extract. Proposed procedures are characterized by higher interference thresholds for sulfites, ascorbic acid, and citric acid compared to pure enzymes (horseradish peroxidase and mushroom tyrosinase) in the same conditions. Compared with standard Folin-Ciocalteu (FC) method the procedures described in this work are also characterized by less interference and more rapid determination. Conclusion: The procedures have been applied to TPC determination in tea, coffee, and wine samples. The results agree with the FC method for tea and coffee samples and are lower for wine samples, probably, due to sulfites interference.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4716
Author(s):  
Marcelo Coelho Silva ◽  
Jeancarlo Pereira dos Anjos ◽  
Lilian Lefol Nani Guarieiro ◽  
Bruna A. Souza Machado

There are a significant number of analytical methodologies employing different techniques to determine phenolic compounds in beverages. However, these methods employ long sample preparation processes and great time consumption. The aim of this paper was the development of a simple method for evaluating the phenolic compounds’ presence in Brazilian craft beers without a previous extraction step. Catechin, caffeic acid, epicatechin, p-coumaric acid, hydrated rutin, trans-ferulic acid, quercetin, kaempferol, and formononetin were analyzed in fifteen different craft beers. The method showed good linearity (R2 ≥ 0.9966). The limit of detection ranged from 0.08 to 0.83 mg L−1, and limits of quantification were between 0.27 and 2.78 mg L−1. The method showed a satisfactory precision (RSD ≤ 16.2%). A good accuracy was obtained by the proposed method for all phenolic compounds in craft beer (68.6% ˂ accuracy ˂ 112%). Catechin showed higher concentrations (up to 124.8 mg L−1) in the samples, followed by epicatechin (up to 51.1 mg L−1) and caffeic acid (up to 8.13 mg L−1). Rutin and formononetin were observed in all analyzed samples (0.52 mg L−1 to 2.40 mg L−1), and kaempferol was less present in the samples. The presence of plant origin products was determinant for the occurrence of the highest concentrations of phenolic compounds in Brazilian craft beers.


Sign in / Sign up

Export Citation Format

Share Document