scholarly journals Cox-2 gene expression in chemically induced skin papillomas cannot predict subsequent tumor fate

2010 ◽  
Vol 4 (4) ◽  
pp. 347-356 ◽  
Author(s):  
Tomo-o Ishikawa ◽  
Naveen K. Jain ◽  
Harvey R. Herschman
Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 454
Author(s):  
Jaime Palomino ◽  
Javiera Flores ◽  
Georges Ramirez ◽  
Victor H. Parraguez ◽  
Monica De los Reyes

The gene expression in the canine oviduct, where oocyte maturation, fertilization, and early embryonic development occur, is still elusive. This study determined the oviductal expression of (PR), cyclooxygenase-2 (COX-2), growth differentiation factor 9 (GDF-9), and bone morphogenetic protein 15 (BMP-15) during the canine oestrous cycle. Samples were collected from bitches at anoestrus (9), proestrus (7), oestrus (8), and dioestrus (11), after routine ovariohysterectomy and the ovarian surface structures and plasma progesterone concentration evaluated the physiological status of each donor. The oviductal cells were isolated and pooled. Total RNA was isolated, and gene expression was assessed by qPCR followed by analysis using the t-test and ANOVA. The PR mRNA increased (P < 0.05) from the anoestrus to dioestrus with the plasma progesterone concentration (r = 0.8). COX-2 mRNA expression was low in the anoestrus and proestrus, and negligible in the oestrus, while it was around 10-fold higher (P < 0.05) in the dioestrus. The GDF-9 mRNA was expressed during all phases of the oestrous cycle and was most abundant (P < 0.05) during oestrus phase. The BMP-15 mRNA decreased (P < 0.05) in the anoestrus and proestrus phases. Thus, the transcripts were differentially expressed in a stage-dependent manner, suggesting the importance of oestrous cycle regulation for successful reproduction in dogs.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1071
Author(s):  
Tae-Won Jang ◽  
Jae-Ho Park

One of the Korean endemic plants, Abeliophyllum distichum Nakai (Oleaceae), contains acteoside, which is a glycoside exhibiting neuroprotective, anti-inflammation effects and antibacterial capacities. We conducted an investigation on the effects of the callus of A. distichum (cultivar Okhwang 1, CAO) on pro-inflammatory mediators released following nuclear factor-кB (NF-кB), phosphatidylinositol 3-kinase/Akt (PI3K-Akt) and mitogen-activated protein kinase (MAPK) signal activation in lipopolysaccharide (LPS)-induced RAW 264.7 cells. Immunoblotting was employed to find out the expression of cyclooxygenase-2 (COX-2), inducible nitric oxide (iNOS), and activation of MAPK molecules, NF-κB and Akt. Cytokines, COX-2, and iNOS gene expression were assessed using polymerase chain reaction techniques. Cytokines, COX-2, and iNOS gene expression were assessed using polymerase chain reaction techniques. High-performance liquid chromatography revealed that CAO was rich in acteoside and isoacteoside. As a result, CAO inhibited the generation of NO, cytokines, COX-2, and iNOS expression. Further, translocation to the nuclear of NF-κB p65 and degradation of the inhibitor of NF-кB (IкB) were alleviated by suppressing phosphorylation. Additionally, CAO significantly impacted MAPK pathway activation by potentially reducing phosphorylation of MAPKs. These results indicate that the anti-inflammatory effect of CAO is mediated via the inhibition of MAPK, PI3K/Akt, and NF-κB signaling pathways, probably via glycosides, phenolics, and flavonoids bioactivity derived from plants. CAO can serve as a potential anti-inflammatory agent, which alleviates inflammation factors and act through specific cell signaling pathways.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Erika Calvano Küchler ◽  
Agnes Schröder ◽  
Vinicius Broska Teodoro ◽  
Ute Nazet ◽  
Rafaela Scariot ◽  
...  

Abstract Background This study aimed to investigate, if different physiological concentrations of vitamin D (25(OH)D3) and single nucleotide polymorphisms in vitamin D receptor (VDR) gene have an impact on gene expression in human periodontal ligament (hPDL) fibroblasts induced by simulated orthodontic compressive strain. Methods A pool of hPDL fibroblasts was treated in absence or presence of 25(OH)D3 in 3 different concentrations (10, 40 and 60 ng/ml). In order to evaluate the role of single nucleotide polymorphisms in the VDR gene, hPDL fibroblasts from 9 patients were used and treated in absence or presence of 40 ng/ml 25(OH)D3. Each experiment was performed with and without simulated orthodontic compressive strain. Real-time PCR was used for gene expression and allelic discrimination analysis. Relative expression of dehydrocholesterol reductase (DHCR7), Sec23 homolog A, amidohydrolase domain containing 1 (AMDHD1), vitamin D 25-hydroxylase (CYP2R1), Hydroxyvitamin D-1-α hydroxylase, receptor activator of nuclear factor-κB ligand (RANKL), osteoprotegerin (OPG), cyclooxygenase-2 (COX-2) and interleukin-6 (IL6) was assessed. Three single nucleotide polymorphisms in VDR were genotyped. Parametric or non-parametric tests were used with an alpha of 5%. Results RANKL, RANKL:OPG ratio, COX-2, IL-6, DHCR7, CYP2R1 and AMDHD1 were differentially expressed during simulated orthodontic compressive strain (p < 0.05). The RANKL:OPG ratio was downregulated by all concentrations (10 ng/ml, 40 ng/ml and 60 ng/ml) of 25(OH)D3 (mean = 0.96 ± 0.68, mean = 1.61 ± 0.66 and mean = 1.86 ± 0.78, respectively) in comparison to the control (mean 2.58 ± 1.16) (p < 0.05). CYP2R1 gene expression was statistically modulated by the different 25(OH)D3 concentrations applied (p = 0.008). Samples from individuals carrying the GG genotype in rs739837 presented lower VDR mRNA expression and samples from individuals carrying the CC genotype in rs7975232 presented higher VDR mRNA expression (p < 0.05). Conclusions Simulated orthodontic compressive strain and physiological concentrations of 25(OH)D3 seem to regulate the expression of orthodontic tooth movement and vitamin-D-related genes in periodontal ligament fibroblasts in the context of orthodontic compressive strain. Our study also suggests that single nucleotide polymorphisms in the VDR gene regulate VDR expression in periodontal ligament fibroblasts in the context of orthodontic compressive strain.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Noha H. Habashy ◽  
Ahmad S. Kodous ◽  
Marwa M. Abu-Serie

AbstractCarbon tetrachloride (CCl4) is an abundant environmental pollutant that can generate free radicals and induce oxidative stress in different human and animal organs like the kidney, lung, brain, and spleen, causing toxicity. The present study evaluated the alleviative mechanism of the isolated polyphenolic fraction from seedless (pulp and skin) black Vitis vinifera (VVPF) on systemic oxidative and necroinflammatory stress in CCl4-intoxicated rats. Here, we found that the administration of VVPF to CCl4-intoxicated rats for ten days was obviously ameliorated the CCl4-induced systemic elevation in ROS, NO and TBARS levels, as well as MPO activity. Also, it upregulated the cellular activities of the enzymatic (SOD, and GPx) and non-enzymatic (TAC and GSH) antioxidants. Furthermore, the gene expression of the ROS-related necroinflammatory mediators (NF-κB, iNOS, COX-2, and TNF-α) in the kidney, brain, and spleen, as well as IL-1β, and IL-8 in the lung were greatly restored. The histopathological studies confirmed these biochemical results and showed a noticeable enhancing effect in the architecture of the studied organs after VVPF intake. Thus, this study indicated that VVPF had an alleviative effect on CCl4-induced necroinflammation and oxidative stress in rat kidney, lung, brain, and spleen via controlling the ROS/NF-κB pathway.


PLoS ONE ◽  
2016 ◽  
Vol 11 (9) ◽  
pp. e0161430 ◽  
Author(s):  
Winfred Stacey ◽  
Shreyas Bhave ◽  
Rosalie M. Uht
Keyword(s):  

1999 ◽  
Vol 86 (1) ◽  
pp. 103-107 ◽  
Author(s):  
Chong-Jeh Lo ◽  
Ken C. Chiu ◽  
Minjuan Fu ◽  
Rosa Lo ◽  
Scott Helton
Keyword(s):  
Fish Oil ◽  

Sign in / Sign up

Export Citation Format

Share Document