Design and synthesis of a novel chemosensor for simultaneous detection of CN−, HCO3− and AcO− anions and Fe2+ cation in an organic-aqueous environment: An experimental and DFT studies

2021 ◽  
pp. 130708
Author(s):  
Shirin Kamali ◽  
Masoumeh Orojloo ◽  
Saeid Amani
2020 ◽  
Vol 1199 ◽  
pp. 127007 ◽  
Author(s):  
Mabrouk Horchani ◽  
Amel Hajlaoui ◽  
Abdel Halim Harrath ◽  
Lamjed Mansour ◽  
Hichem Ben Jannet ◽  
...  

2021 ◽  
Author(s):  
M. K. Prashanth ◽  
Raghu M.S ◽  
Pradeep Kumar C. B. ◽  
Yogesh Kumar K ◽  
Prathibha BS ◽  
...  

We herein report a design and synthesis of new 1,3,5-triazine based pyrazole derivatives (5a-i) for anticancer activity targeting epidermal growth factor (EGFR) tyrosine kinase. The newly synthesized compounds were characterized...


2021 ◽  
Vol 1230 ◽  
pp. 129920
Author(s):  
Sarra Chortani ◽  
Mabrouk Horchani ◽  
Mansour Znati ◽  
Noureddine Issaoui ◽  
Hichem Ben Jannet ◽  
...  

Author(s):  
W. Allen Shannon ◽  
José A. Serrano ◽  
Hannah L. Wasserkrug ◽  
Anna A. Serrano ◽  
Arnold M. Seligman

During the design and synthesis of new chemotherapeutic agents for prostatic carcinoma based on phosphorylated agents which might be enzyme-activated to cytotoxicity, phosphorylcholine, [(CH3)3+NCH2CH2OPO3Ca]Cl-, has been indicated to be a very specific substrate for prostatic acid phosphatase (PAP). This phenomenon has led to the development of specific histochemical and ultracytochemical methods for PAP using modifications of the Gomori lead method for acid phosphatase. Comparative histochemical results in prostate and kidney of the rat have been published earlier with phosphorylcholine (PC) and β-glycerophosphate (βGP). We now report the ultracytochemical results.Minced tissues were fixed in 3% glutaraldehyde-0.1 M phosphate buffered (pH 7.4) for 1.5 hr and rinsed overnight in several changes of 0.05 M phosphate buffer (pH 7.0) containing 7.5% sucrose. Tissues were incubated 30 min to 2 hr in Gomori acid phosphatase medium (2) containing 0.1 M substrate, either PC or βGP.


Author(s):  
Jean-Paul Revel

In the last 50+ years the electron microscope and allied instruments have led the way as means to acquire spatially resolved information about very small objects. For the material scientist and the biologist both, imaging using the information derived from the interaction of electrons with the objects of their concern, has had limitations. Material scientists have been handicapped by the fact that their samples are often too thick for penetration without using million volt instruments. Biologists have been handicapped both by the problem of contrast since most biological objects are composed of elements of low Z, and also by the requirement that sample be placed in high vacuum. Cells consist of 90% water, so elaborate precautions have to be taken to remove the water without losing the structure altogether. We are now poised to make another leap forwards because of the development of scanned probe microscopies, particularly the Atomic Force Microscope (AFM). The scanning probe instruments permit resolutions that electron microscopists still work very hard to achieve, if they have reached it yet. Probably the most interesting feature of the AFM technology, for the biologist in any case, is that it has opened the dream of high resolution in an aqueous environment. There are few restrictions on where the instrument can be used. AFMs can be made to work in high vacuum, allowing the material scientist to avoid contamination. The biologist can be made happy as well. The tips used for detection are made of silicon nitride,(Si3N4), and are essentially unaffected by exposure to physiological saline (about which more below). So here is an instrument which can look at living whole cells and at atoms as well.


Author(s):  
Mehmet Sarikaya ◽  
Ilhan A. Aksay

Biomimetics involves investigation of structure, function, and methods of synthesis of biological composite materials. The goal is to apply this information to the design and synthesis of materials for engineering applications.Properties of engineering materials are structure sensitive through the whole spectrum of dimensions from nanometer to macro scale. The goal in designing and processing of technological materials, therefore, is to control microstructural evolution at each of these dimensions so as to achieve predictable physical and chemical properties. Control at each successive level of dimension, however, is a major challenge as is the retention of integrity between successive levels. Engineering materials are rarely fabricated to achieve more than a few of the desired properties and the synthesis techniques usually involve high temperature or low pressure conditions that are energy inefficient and environmentally damaging.In contrast to human-made materials, organisms synthesize composites whose intricate structures are more controlled at each scale and hierarchical order.


Planta Medica ◽  
2008 ◽  
Vol 74 (09) ◽  
Author(s):  
B Kang ◽  
YJ Jung ◽  
R Jeon
Keyword(s):  

Planta Medica ◽  
2016 ◽  
Vol 82 (05) ◽  
Author(s):  
KY Orabi ◽  
MS Abaza ◽  
KA ElSayed ◽  
AY Elnagar ◽  
SI Faggal ◽  
...  

1996 ◽  
Vol 76 (06) ◽  
pp. 1090-1095 ◽  
Author(s):  
C Ravanat ◽  
M Freund ◽  
S Schuhler ◽  
P Grunert ◽  
L Meyer ◽  
...  

SummaryThe purpose of this study was to develop specific and sensitive immunoassays to detect early indices of hypercoagulability in the rat. Rat platelet factor 4 (rPF4) and rat fibrinopeptide A (rFPA) assays, tools for the detection of activation of platelets and coagulation respectively, were designed using antibodies raised against purified rPF4 and against synthetic rFPA. The relevance of these new assays and of the commercially available ELISA kit for thrombin-antithrombin III (TAT) complexes was demonstrated in a rat model of a prethrombotic state induced by intravenous infusion of varying doses of thromboplastin (90 to 2400 μl/kg/h). In this model, the immunoassays allowed simultaneous detection of low levels of rFPA and rPF4 which were correlated with fibrinogen and platelet consumption and TAT generation and further proved to be of higher sensitivity than the classical methods of platelet count or measurement of fibrinogen levels. Plasma concentrations of rFPA, rPF4 and TAT were dependent on infusion time and thromboplastin dose, while hirudin (1 mg/kg) prevented their appearance. Thus the new specific immunoassays for rPF4 and rFPA and the commercial human TAT assay represent useful tools for pathophysiological studies or the screening of antithrombotic drugs in rats.


Sign in / Sign up

Export Citation Format

Share Document