Investigation of strain-hardening rate on splined mandrel flow forming of 5052 and 6061 aluminum alloys

2012 ◽  
Vol 532 ◽  
pp. 287-294 ◽  
Author(s):  
M. Haghshenas ◽  
J.T. Wood ◽  
R.J. Klassen
2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Ehab A. El-Danaf ◽  
Mahmoud S. Soliman ◽  
Ayman A. Al-Mutlaq

The effect of grain size and stacking fault energy (SFE) on the strain hardening rate behavior under plane strain compression (PSC) is investigated for pure Cu and binary Cu-Al alloys containing 1, 2, 4.7, and 7 wt. % Al. The alloys studied have a wide range of SFE from a low SFE of 4.5 mJm−2for Cu-7Al to a medium SFE of 78 mJm−2for pure Cu. A series of PSC tests have been conducted on these alloys for three average grain sizes of ~15, 70, and 250 μm. Strain hardening rate curves were obtained and a criterion relating twinning stress to grain size is established. It is concluded that the stress required for twinning initiation decreases with increasing grain size. Low values of SFE have an indirect influence on twinning stress by increasing the strain hardening rate which is reflected in building up the critical dislocation density needed to initiate mechanical twinning. A study on the effect of grain size on the intensity of the brass texture component for the low SFE alloys has revealed the reduction of the orientation density of that component with increasing grain size.


Author(s):  
A Megalingam ◽  
KS Hanumanth Ramji

Understanding the deformation behavior of rough surface contacts is essential to minimise the tribological consequences of contacts. Mostly, statistical, deterministic and fractal approaches are adopted to explore the contact of rough surfaces. In statistical approach, a single asperity contact model is developed and extended to the whole surface. In the present work, a deformable spherical asperity contact with a rigid flat is modeled and analysed by accounting the combined effect of Young’s modulus, Poisson’s ratio, yield strength and isotropic strain hardening rate using finite element method. The results reveal that the elastic, elastoplastic and plastic contact states are highly influenced by E/Y ratio and strain hardening rate followed by Poisson’s ratio. The dimensionless contact radius is an inadequate parameter to explore the combined effect of material properties. For all E/Y ratio and Poisson’s ratio, as the strain hardening rate increases, the dimensionless contact area decreases for the same dimensionless contact load at elastoplastic and fully plastic contact states. As the strain hardening rate increases, the fully plastic contact state is reached at low dimensionless interference compared to elastic perfectly plastic materials for all E/Y ratio and Poisson’s ratio. For a common elastic-plastic material, empirical relations are developed to calculate the contact load and contact area appropriately with E/Y ratio, Poisson’s ratio and interference ratio as input variables. It can be utilised to study the interaction of rough surface contacts for most of the practical materials.


2019 ◽  
Vol 794 ◽  
pp. 135-141
Author(s):  
Bin Zhang ◽  
Yang Wang

The mechanical responses of Ti-5Al-2.5Sn alloy at low temperatures were investigated under quasi-static and dynamic tensile loads using MTS system and SHTB system, respectively. Tensile stress-strain curves were obtained over the temperature range of 153 to 298K and the rate range of 0.001 to 1050 s-1. Experimental results indicate that the tensile behavior of Ti-5Al-2.5Sn alloy is dependent on strain rate and temperature. Yield stress and flow stress increase with increasing strain rate and decrease with increasing temperature. Results also indicate that strain hardening rate of Ti-5Al-2.5Sn alloy is lower at high strain rate, while strain hardening rate varies little with testing temperature. The Khan-Huang-Liang constitutive model was chosen to characterize the tensile responses of Ti-5Al-2.5Sn alloy at low temperatures and different strain rates. The model results coincide well with the experimental results within the tested temperature and rate ranges.


Author(s):  
Ning Fang

Among the effects of strain hardening, strain-rate hardening, and temperature softening, it has long been argued about which effect is predominant in governing the material flow stress in machining. This paper compares four material constitutive models commonly employed, including Johnson-Cook’s model, Oxley’s model, Zerilli-Armstrong’s model, and Maekawa et al.’s model. A new quantitative sensitivity analysis of the material flow stress is performed based on Johnson-Cook’s model covering a wide range of engineering materials, including plain carbon steels with different carbon contents, alloyed steels, aluminum alloys with different chemical compositions and heat treatment conditions, copper and copper alloys, iron, nickel, tungsten alloys, etc. It is demonstrated that the first predominant factor governing the material flow stress is either strain hardening or thermal softening, depending on the specific work material employed and the varying range of temperatures. Strain-rate hardening is the least important factor governing the material flow stress, especially when machining aluminum alloys.


2005 ◽  
Vol 500-501 ◽  
pp. 15-26 ◽  
Author(s):  
John J. Jonas ◽  
Evgueni I. Poliak

It is shown that the kinetics of softening between mill passes can be modeled more simply when the normalized strain (reduction) per pass is employed rather than the conventional strain. This method requires a second important input, namely the strain hardening rate at the end of preloading. Using this approach, the number of input parameters and experiments required for their determination are drastically reduced. The use of the Law of Mixtures to describe the behaviors of the recrystallized and unrecrystallized volume fractions is then illustrated. Finally, the approach required for quantifying the precipitation kinetics (in microalloyed steels) is described.


2011 ◽  
Vol 284-286 ◽  
pp. 1537-1541 ◽  
Author(s):  
Min Hao ◽  
Fan Zhang ◽  
Cheng Wen Tan ◽  
Tie Jian Su ◽  
Xiao Dong Yu

Effects of anisotropy on the microstructural characteristics and mechanical behavior of shock loaded of AZ31 magnesium alloy have been investigated. Using electron backscatter diffraction, tension twinning was observed in both shock loading directions along the normal (ND) and rolling directions (RD). Compression tests were carried out along ND and RD in both as-received and post-shock conditions. It indicated that the RD samples show a more notable hardening behavior compared to the as-received conditions. Moreover, it is postulated here that detwinningresults in a drop of strain-hardening rate for the ND samples under post shock reload conditions and tension twinning formed during the shock wave loading process leads to a significant moving left of the peak strain hardening rate for the RD samples under post shock reload conditions.


Sign in / Sign up

Export Citation Format

Share Document