scholarly journals Probing hydrogen effect on nanomechanical properties of X65 pipeline steel using in-situ electrochemical nanoindentation

Author(s):  
Dong Wang ◽  
Anette Brocks Hagen ◽  
Di Wan ◽  
Xu Lu ◽  
Roy Johnsen
2011 ◽  
Vol 36 (19) ◽  
pp. 12626-12643 ◽  
Author(s):  
E.V. Chatzidouros ◽  
V.J. Papazoglou ◽  
T.E. Tsiourva ◽  
D.I. Pantelis

2021 ◽  
Vol 63 (1) ◽  
pp. 3
Author(s):  
Ю.И. Головин

The review discusses the details of various materials mechanical behavior in submicro- and nanoscale. Significant advances in this scope result from the development of wide family of load based precise nanotesting techniques called nanoindentation. But nowadays, nanomechanical properties are studied not only by nanoindentation techniques in narrow sense, i.e. local loading of macro, micro and nanoscale objects. Nanomechanical load testing is discussed here within a wider scope employing precise deformation measurement with nanometer scale resolution caused by various types of low load application to the object under study including uniaxial compression or extension, shearing, bending or twisting, optionally accompanied by in situ monitoring sample microstructure using scanning and transmission electron microscopy and Laue microdiffraction technique. The main courses of experimental techniques development in recent ten years along with the results obtained using them in single, poly and nano crystalline materials, composites, films and coatings, amorphous solids and such biomaterials as tissues, living cells and macromolecules are described. Special attention is paid to deformation size effects and atomic mechanisms in nanoscale. This review is a natural continuation and development of the review published at Fiz.Tverd.Tela vol.50, issue 12, 2008 of the same author that discusses details of nanomechanical properties of solids. Current review includes wider range of nanomechanical testing concepts and recent achievements in the scope. The work was supported by RFBR grant for project #19-12-50235.


2020 ◽  
Vol 570 ◽  
pp. 362-374 ◽  
Author(s):  
Nan Yang ◽  
Chunxia Su ◽  
Yuemei Zhang ◽  
Junji Jia ◽  
Robert L. Leheny ◽  
...  

2019 ◽  
Vol 44 (36) ◽  
pp. 20545-20551 ◽  
Author(s):  
X. Lu ◽  
Y. Ma ◽  
M. Zamanzade ◽  
Y. Deng ◽  
D. Wang ◽  
...  

2011 ◽  
Vol 284-286 ◽  
pp. 1096-1100 ◽  
Author(s):  
Ke Tong ◽  
Yan Ping Zeng ◽  
Xin Li Han ◽  
Yao Rong Feng ◽  
Xiao Dong He

The micro-mechanical behavior of inclusions in X80 pipeline steel under fatigue loading was investigated by means of SEM in situ observation. The influence of sizes and shapes of inclusion on crack initiation and propagation was analyzed. The result shows that for large-size single-particle inclusion, cracks initiate from the interior under the fatigue loading. When a certain circulation cycles are reached, cracks initiate at the matrix near the sharp corner of the inclusion. The cracks extend at the matrix during the stable extension period and unstable extension period following the crack initiation, until fracture occurred. For chain inclusion, cracks first initiate at the interface between inclusion and matrix within the chain area, and the circulation cycles needed for initiation are far less than single inclusion. Cracks steadily extend after the initiation, and then fracture after very short circulation cycles. A chain of inclusion with the shape corners is serious harmful to the fatigue properties.


Author(s):  
Rohit Khanna ◽  
Kalpana S. Katti ◽  
Dinesh R. Katti

Characterizing the mechanical characteristics of living cells and cell–biomaterial composite is an important area of research in bone tissue engineering. In this work, an in situ displacement-controlled nanoindentation technique (using Hysitron Triboscope) is developed to perform nanomechanical characterization of living cells (human osteoblasts) and cell–substrate constructs under physiological conditions (cell culture medium; 37 °C). In situ elastic moduli (E) of adsorbed proteins on tissue culture polystyrene (TCPS) under cell culture media were found to be ∼4 GPa as revealed by modulus mapping experiments. The TCPS substrates soaked in cell culture medium showed significant difference in surface nanomechanical properties (up to depths of ∼12 nm) as compared to properties obtained from deeper indentations. Atomic force microscopy (AFM) revealed the cytoskeleton structures such as actin stress fiber networks on flat cells which are believed to impart the structural integrity to cell structure. Load-deformation response of cell was found to be purely elastic in nature, i.e., cell recovers its shape on unloading as indicated by linear loading and unloading curves obtained at 1000 nm indentation depth. The elastic response of cells is obtained during initial cell adhesion (ECell, 1 h, 1000 nm = 4.4–12.4 MPa), cell division (ECell, 2 days, 1000 nm = 1.3–3.0 MPa), and cell spreading (ECell, 2 days, 1000 nm = 6.9–11.6 MPa). Composite nanomechanical responses of cell–TCPS constructs were obtained by indentation at depths of 2000 nm and 3000 nm on cell-seeded TCPS. Elastic properties of cell–substrate composites were mostly dominated by stiff TCPS (EBulk = 5 GPa) lying underneath the cell.


1999 ◽  
Vol 594 ◽  
Author(s):  
M. Pang ◽  
D. E. Wilson ◽  
D. F. Bahr

AbstractPassive films have been grown electrochemically on a polycrystalline titanium alloy. By varying the applied voltages, the film thickness is varied. A testing apparatus has been constructed to allow measurements of nanomechanical properties during electrochemical testing using a Ag/AgCl reference electrode in a traditional three-electrode potentiostatic scan. The stress at which oxide film fracture occurs is correlated to the applied potential. Observations of in situ film fracture measurements on single grains during immersion show the strength of the film remains constant in environments in which the film is inert, but decreases by approximately 20% in solutions which lead to corrosion. The fracture mode of the oxide has been observed using atomic force microscopy, and is shown to qualitatively match the largest tensile stresses which develop using elastic contact mechanics. A simplified model for determining the maximum tensile stress around an indentation is presented, and is used to show the stress required for fracture increases approximately linearly with increasing applied anodic polarization, from 850 MiPa to approximately 3 GPa for applied potentials between 1 and 9 V.


Sign in / Sign up

Export Citation Format

Share Document