Influence of the Ag1+ and Co2+ doping on structural, optical and anti-cancer properties of ZnFe2O4 nanoparticles synthesized by co-precipitation method

2022 ◽  
Vol 276 ◽  
pp. 115544
Author(s):  
B. Jyothish ◽  
U.S. Geethu ◽  
John Jacob

The Zinc Ferrites (ZnFe2O4) nanoparticles (NPs) successfully synthesized by co-precipitation method. As prepared NPs were annealed withdifferent temperature at 800 and 1000C. The crystalline phase, surface morphology andelemental distribution were confirmed by XRD, SEM and EDS respectively. The prepared ZnFe2O4XRD pattern confirm the cubic crystalline nature. The surface morphology of the prepared sample was found irregular rock like structure due to ferric metal. FTIR, EDS studies prove charactristics behavioural vibration of Zn-Fe-O elements and purity of the sample correspondingly. Prepared ZnFe2O4 sample exhibit a super paramagnetic nature with the saturated magnetization of 22.066 emu/g and coercivity of 15 Oe by VSM analysis.


2015 ◽  
Vol 7 (2) ◽  
pp. 1393-1403
Author(s):  
Dr R.P VIJAYALAKSHMI ◽  
N. Manjula ◽  
S. Ramu ◽  
Amaranatha Reddy

Single crystalline nano-sized multiferroic BiFeO3 (BFO) powders were synthesized through simple chemical co-precipitation method using polyethylene glycol (PEG) as capping agent. We obtained pure phase BiFeO3 powder by controlling pHand calcination temperature. From X-ray diffraction studies the nanoparticles were unambiguously identified to have a rhombohedrally distorted perovskite structure belonging to the space group of R3c. No secondary phases were detected. It indicates single phase structure. EDX spectra indicated the appearance of three elements Bi, Fe, O in 1:1:3. From the UV-Vis diffuse reflectance spectrum, the absorption cut-off wavelength of the BFO sample is around 558nm corresponding to the energy band gap of 2.2 eV. The size (60-70 nm) and morphology of the nanoparticles have been analyzed using transmission electron microscopy (TEM).   Linear M−H behaviour and slight hysteresis at lower magnetic field is observed for BiFeO3 nanoparticles from Vibrating sample magnetometer studies. It indicates weak ferromagnetic behaviour at room temperature. From dielectric studies, the conductivity value is calculated from the relation s = L/RbA Sm-1 and it is around 7.2 x 10-9 S/m.


2020 ◽  
Vol 3 (1) ◽  
pp. 30-33
Author(s):  
Muthulakshmi M ◽  
Madhumitha G

Nanotechnology is a field of applied science focused on design, synthesis and characterization of nanomaterials. The nickel and magnesium have improved their applications in transparent electrodes and nano electronics. In addition, magnesium oxide has moisture resistance and high melting point properties. In the present work has been carried out in the development of green crystalline powder of nickel doped magnesium oxide nanoparticles by Co-precipitation method, from the mixture of nickel chloride and magnesium chloride with KOH as solvent. From the XRD results, crystalline size of the particle can be observed. Spherical structure of Ni doped MgO nanoparticles were indicated by SEM results and powdered composition of samples were obtained from FTIR. EDAX represents the peak composition of the nanoparticle. The above analytical techniques have confirmed that the Ni doped MgO nanoparticles obtained from the mixture of NiCl2 and MgCl2.


2017 ◽  
Vol 68 (1) ◽  
pp. 168-171 ◽  
Author(s):  
Letitia Doina Duceac ◽  
Cristina Elena Dobre ◽  
Ioana Pavaleanu ◽  
Gabriela Calin ◽  
Simona Nichitus ◽  
...  

Preventing diseases is deemed to be the major goal of our century especially when an excessive fluoride in drinking water can cause dental fluorosis, bone stiffness, rheumatism and skeletal fluorosis. Fluoride uptake from groundwater implies a worldwide multidisciplinary effort in order to develop renewable, cheap, human friendly materials. Among other materials, hydrotalcites could be good candidates for an efficient fluoride removal from water due to their adsorption, anion exchange and reconstruction properties. These nanostructured materials were synthesized using co-precipitation method in controlled conditions. Presence of anions in the interlayer structure and morphological aspects were performed by FTIR and SEM techniques. Thermal treatment of hydrotalcites showed good adsorption capacities for water defluoridation mostly due to their tendency to restore the original structure.


Author(s):  
Amer Imraish ◽  
Afnan Al-Hunaiti ◽  
Tuqa Abu-Thiab ◽  
Abed Al-Qader Ibrahim ◽  
Eman Hwaitat ◽  
...  

Background: The growing unsatisfaction toward the available traditional chemotherapeutic agents enhanced the need to develop new methods for obtaining materials with more effective and safe anti-cancer properties. Over the past few years, usage of metallic nanoparticles has been a target for researchers of different scientific and commercial fields due to their tiny sizes, environment friendly properties and wide range applications. To overcome the obstacles of traditional physical and chemical methods for synthesis of such nanoparticles, a new less expensive and eco-friendly method has been adopted using natural existing organisms as a reducing agent to mediate synthesis of the desired metallic nanoparticles from their precursors, a process called green biosynthesis of nanoparticles. Objective: Here in the present study, zinc iron bimetallic nanoparticles (ZnFe2O4) were synthesized via an aqueous extract of Boswellia Carteri resin mixed with zinc acetate and iron chloride precursors, and they were tested for their anticancer activity. Methods: Various analytic methods were applied for the characterization of the Phyto synthesized ZnFe2O4 and they were tested for their anticancer activity against MDA-MB-231, K562, MCF-7 cancer cell lines and normal fibroblasts. Results: Our results demonstrate the synthesis of cubic structured bimetallic nanoparticles ZnFe2O4 with an average diameter 10.54 nm. MTT cytotoxicity assay demonstrate that our phyto-synthesized ZnFe2O4 nanoparticles exhibited a selective and potent anticancer activity against K562 and MDA-MB-231 cell lines with IC50 values 4.53 µM and 4.19 µM, respectively. Conclusion: In conclusion, our bio synthesized ZnFe2O4 nano particles show a promising environmentally friendly of low coast chemotherapeutic approach against selective cancers with a predicted low adverse side effect toward normal cells. Further in vivo advanced animal research should be done to execute their applicability in living organisms.


2007 ◽  
Vol 433 (1-2) ◽  
pp. 328-331 ◽  
Author(s):  
Zhi-Hui Chen ◽  
Yun Yang ◽  
Zhang-Gui Hu ◽  
Jiang-Tao Li ◽  
Shu-Li He

Sign in / Sign up

Export Citation Format

Share Document