Influence of oxygen vacancy compensation on the structure, electronic and mechanical properties of yttrium stabilized tetragonal zirconia

2021 ◽  
Vol 135 ◽  
pp. 106082
Author(s):  
Zhou Fan ◽  
Yang Wang ◽  
Yidong Zhang ◽  
Jianyi Liu
2013 ◽  
Vol 320 ◽  
pp. 505-511
Author(s):  
Ning Li ◽  
Zhi Kai Wu ◽  
Chao Jian ◽  
Wan Qian Zhao ◽  
Jia Zhen Yan

During the 20th century, both dental materials and dental technologies for the fabrication of dental prosthesis progressed remarkably. Owing to the increased demand of safety and aesthetics, 3 mol% yttria stabilized tetragonal zirconia polycrystalline has been recently introduced in prosthetic dentistry for the fabrication of crowns and fixed partial dentures, in combination with CAD/CAM technique. This greatly changed the conventional dental laboratory work which is labor-intensive and experience-dependent. This review mainly introduced the state of dental zirconia and the application of CAD/CAM technology in dentistry. Key words: Dental Zirconia; CAD/CAM Technique; Mechanical Properties; Transformation Toughing; Low Temperature Aging;


2015 ◽  
Vol 1125 ◽  
pp. 401-405
Author(s):  
Mohamed M. Aboras ◽  
Andanastuti Muchtar ◽  
Noor Faeizah Amat ◽  
Che Husna Azhari ◽  
Norziha Yahaya

The demand for tetragonal zirconia as a dental restorative material has been increasing because of its excellent mechanical properties and resemblance to natural tooth color, as well as its excellent biological compatibility. Cerium oxide (CeO2) has been added to yttria-stabilized zirconia (Y-TZP), and studies have demonstrated that the stability of the tetragonal phase can be significantly improved. Y-TZP with 5wt% CeO2 as a second stabilizer was developed via colloidal process, followed by a suitable sintering process. According to the literature, the sintering process is the most crucial stage in ceramic processing to obtain the most homogeneous structure with high density and hardness. This study aims to investigate the effect of sintering temperature on the mechanical properties of nanostructured ceria–zirconia fabricated via colloidal processing and slip casting process with cold isostatic pressing (CIP). Twenty-five pellet specimens were prepared from ceria–zirconia with 20 nm particle size. CeO2 nanopowder was mixed with Y-TZP nanopowder via colloidal processing. The consolidation of the powder was done via slip casting followed by CIP. The samples were divided into five different sintering temperatures with. Results from FESEM, density and hardness analyses demonstrated statistically significant increase in density and hardness as the sintering temperature increased. The hardness increased from 4.65 GPa to 14.14 GPa, and the density increased from 4.70 to 5.97 (g/cm3) as the sintering temperature increased without changing the holding time. Sintering Ce-Y-TZP at 1600 °C produced samples with homogenous structures, high hardness (14.14 GPa), and full densification with 98% of the theoretical density.


Author(s):  
Juliana Gómez ◽  
Astrid Rueda ◽  
Edgar Alexader Ossa Henao

Dental ceramics made from Yttria stabilized tetragonal Zirconia polycrystalline (Y-TZP) with feldspathic porcelain veneers have similar mechanical and aesthetic response to natural tooth. However, cases of early failure, such as chipping or fracture in the veneering have been reported after short periods of use. The present study evaluated the feldspathic porcelain (VITA-VM9) with addition of 0.5 and 2.5 wt% Alumina-Zirconia as reinforcing agents. Hardness, fracture toughness, contact resistance and color variations were evaluated finding better mechanical performance on the new formulations.


Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2097
Author(s):  
Alexander I. Tyurin ◽  
Vyacheslav V. Rodaev ◽  
Svetlana S. Razlivalova ◽  
Viktor V. Korenkov ◽  
Andrey O. Zhigachev ◽  
...  

The mats of yttria-stabilized tetragonal zirconia nanofibers were prepared using electrospinning. The effect of calcination temperature in the range of 600–1200 °C on their microstructure, phase composition and mechanical properties was investigated. Phase composition of the nanofibers did not change in all ranges of the calcination temperatures, while the average grain size increased from 8 to 39 nm. Nanoindentation testing of the mats showed a decrease in the hysteresis loop energy in samples with higher calcination temperature. Hardness and the elastic modulus measured with the indentation technique were the highest for the mats calcined at 900 °C.


2013 ◽  
Vol 39 (2) ◽  
pp. 1835-1840 ◽  
Author(s):  
S.M. Naga ◽  
E.M. Abdelbary ◽  
M. Awaad ◽  
Y.I. El-Shaer ◽  
H.S. Abd-Elwahab

Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2789 ◽  
Author(s):  
Margarita Goldberg ◽  
Tatiana Obolkina ◽  
Sergey Smirnov ◽  
Pavel Protsenko ◽  
Dmitriy Titov ◽  
...  

Nanocrystalline 3 mol% yttria-tetragonal zirconia polycrystal (3Y-TZP) ceramic powder containing 5 wt.% Al2O3 with 64 m2/g specific area was synthesized through precipitation method. Different amounts of Co (0–3 mol%) were introduced into synthesized powders, and ceramic materials were obtained by heat treatment in the air for 2 h at 1350–1550 °C. The influence of Co addition on the sintering temperature, phase composition, microstructure, mechanical and biomedical properties of the obtained composite materials, and on the resolution of the digital light processing (DLP) printed and sintered ceramic samples was investigated. The addition of a low amount of Co (0.33 mol%) allows us to decrease the sintering temperature, to improve the mechanical properties of ceramics, to preserve the nanoscale size of grains at 1350–1400 °C. The further increase of Co concentration resulted in the formation of both substitutional and interstitial sites in solid solution and appearance of CoAl2O4 confirmed by UV-visible spectroscopy, which stimulates grain growth. Due to the prevention of enlarging grains and to the formation of the dense microstructure in ceramic based on the tetragonal ZrO2 and Al2O3 with 0.33 mol% Co the bending strength of 720 ± 33 MPa was obtained after sintering at 1400 °C. The obtained materials demonstrated the absence of cytotoxicity and good cytocompatibility. The formation of blue CoAl2O4 allows us to improve the resolution of DLP based stereolithographic printed green bodies and sintered samples of the ceramics based on ZrO2-Al2O3. The developed materials and technology could be the basis for 3D manufacturing of bioceramic implants for medicine.


2020 ◽  
Vol 124 (5) ◽  
pp. 599-604
Author(s):  
Suelem C. Barreto ◽  
Renally B.W. Lima ◽  
Flávio Henrique B. Aguiar ◽  
Carlos Tadeu D. Santos ◽  
Luís Alexandre M.S. Paulillo ◽  
...  

2013 ◽  
Vol 538 ◽  
pp. 121-124
Author(s):  
Jing Zhang

Yttria-stabilized zirconia (YSZ) is an important material in the area of energy and optical applications. In this study, the mechanical properties (Young’s modulus, Vickers hardness, flexural strength, and coefficient thermal expansion) and physical properties (phase transition) of yttria-stabilized tetragonal zirconia polycrystalline (Y-TZP) was reported. The effect of thermal cycling on the mechanical properties and the stability was also evaluated.


2006 ◽  
Vol 309-311 ◽  
pp. 1219-1222 ◽  
Author(s):  
Seiji Ban ◽  
Masahiro Nawa ◽  
Y. Suehiro ◽  
H. Nakanishi

Yttria stabilized tetragonal zirconia polycrystals (Y-TZP) have been applied to dental crown and bridges. Whereas, to further improve its mechanical strength, the zirconia/alumina nano-composite stabilized with cerium oxide (Ce-TZP/Al2O3 nano-composite) was developed. In the present study, biaxial flexure strength, fracture toughness and hardness were determined before and after soaking in water-based conditions and the possibility of application to all ceramic dental restorations was discussed. In comparison to Y-TZP, Ce-TZP/Al2O3 nano-composite has quite high flexure strength and fracture toughness along with satisfied durability for LTAD in various water-based conditions encountered in dentistry. Therefore, it is concluded that the nano-composite can be safely applied to dental restoratives such as all-ceramic bridges.


Sign in / Sign up

Export Citation Format

Share Document