Cooperative {101¯2}/{101¯1} twinning and prismatic slip in magnesium crystals

Materialia ◽  
2021 ◽  
pp. 101210
Author(s):  
Konstantin D. Molodov ◽  
Talal Al-Samman ◽  
Dmitri A. Molodov
Keyword(s):  
Author(s):  
J. Cadoz ◽  
J. Castaing ◽  
J. Philibert

Plastic deformation of alumina has been much studied; basal slip occurs and dislocation structures have been investigated by transmission electron microscopy (T.E.M.) (1). Non basal slip has been observed (2); the prismatic glide system <1010> {1210} has been obtained by compression tests between 1400°C and 1800°C (3). Dislocations with <0110> burgers vector were identified using a 100 kV microscope(4).We describe the dislocation structures after prismatic slip, using high voltage T.E.M. which gives much information.Compression tests were performed at constant strainrate (∿10-4s-1); the maximum deformation reached was 0.03. Thin sections were cut from specimens deformed at 1450°C, either parallel to the glide plane or perpendicular to the glide direction. After mechanical thinning, foils were produced by ion bombardment. Details on experimental techniques can be obtained through reference (3).


1974 ◽  
Vol 25 (1) ◽  
pp. 269-275 ◽  
Author(s):  
H. Kubsch ◽  
P. Paufler ◽  
G. E. R. Schulze

2014 ◽  
Vol 783-786 ◽  
pp. 491-496
Author(s):  
Mayumi Suzuki ◽  
Yasuyuki Murata ◽  
Kyosuke Yoshimi

Compressive creep behavior of hot-rolled (40%) Mg-Y binary and Mg-Y-Zn ternary dilute solid solution alloys are investigated in this study. Creep strength is substantially improved by the addition of zinc. Activation Energy for creep in Mg-Y and Mg-Y-Zn alloys are around 200 kJ/mol at the temperature range from 480 to 570 K. These values are higher than the activation energy for self-diffusion coefficient in magnesium (135 kJ/mol). Many stacking faults, which are planar type defects are observed on the basal planes of the magnesium matrix in Mg-Y-Zn ternary alloys. TEM observation has been revealed that the non-basal a-dislocation slip is significantly activated by these alloys. The rate controlling mechanism of Mg-Y and Mg-Y-Zn dilute alloys are considered to the cross-slip or prismatic-slip controlled dislocation creep with high activation energy for creep, more than 1.5 times higher than the activation energy for creep controlled dislocation climb.


Metals ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 124
Author(s):  
Xiaohua Zhou ◽  
Changwan Ha ◽  
Sangbong Yi ◽  
Jan Bohlen ◽  
Norbert Schell ◽  
...  

To explore the effect of neodymium (Nd) on the deformation mechanisms of Mg–Zn alloys, texture and lattice strain developments of hot-rolled Mg–Zn (Z1) and Mg–Zn–Nd (ZN10) alloys were investigated using in situ synchrotron diffraction and compared with elasto-viscoplastic self-consistent simulation under tensile loading. The Nd-containing ZN10 alloys show much weaker texture after hot rolling than the Nd-free Z1 alloy. To investigate the influence of the initial texture on the texture and lattice strain evolution, the tensile tests were carried out in the rolling and transverse direction. During tension, the {002}<100> texture components develop fast in Z1, which was not seen for ZN10. On the other hand, <100> fiber // loading direction (LD) developed in both alloys, although it was faster in ZN10 than in Z1. Lattice strain investigation showed that <101> // LD-oriented grains experienced plastic deformation first during tension, which can be related to basal slip activity. This was more apparent for ZN10 than for Z1. The simulation results show that the prismatic slip plays a vital role in the plastic deformation of Z1 directly from the beginning. In contrast, ZN10 plastic deformation starts with dominant basal slip but during deformation prismatic slip becomes increasingly important.


1981 ◽  
Vol 42 (C3) ◽  
pp. C3-43-C3-47 ◽  
Author(s):  
J. Castaing ◽  
J. Cadoz ◽  
S. H. Kirby

Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 116
Author(s):  
Chao Fang ◽  
Jing Zhang ◽  
Ying Huang ◽  
Jianhao Chen

The interaction between interstitial oxygen atoms and <a>-type screw dislocations was investigated via first-principles calculations to elucidate the effect of oxygen solutes on the deformation behaviors of Mg. The results show that repulsive interactions exist between basal screw dislocation cores and oxygen atoms, which would enable the full basal dislocation to bypass the oxygen atoms in the dislocation glide plane through the cross-slip process. This repulsion also increases the resistance to the motion of dissociated basal dislocations. Moreover, the energy of prismatic <a>-type screw dislocation cores is reduced by the presence of oxygen, which would stabilize the screw dislocation core on the prismatic plane, accordingly facilitating the prismatic slip. This information can complement the fundamental knowledge of alloying Mg using interstitial solutes.


2020 ◽  
Vol 993 ◽  
pp. 161-165
Author(s):  
Yi Zhang ◽  
Xiao Hui Feng ◽  
Yuan Sheng Yang

The effect of Ca on the microstructure and mechanical properties of directionally solidified (DSed) Mg-3Zn-xCa alloys (x=0.2,0.5,0.8wt.%) was investigated in the present work. The results showed that the DSed samples with the growth rate of 120 μm/s had columnar dendritic structures and the primary dendritic arm spacing (PDAS) decreased with the content of Ca increase. The TEM result indicated that the growth orientation of the DSed Mg-Zn-xCa alloys was , which was independent of the content of Ca. The tensile tests at room temperature showed that the mechanical properties of the DSed Mg-Zn-xCa alloys were strongly affected by the content of Ca. The addition of Ca remarkably improved the ultimate tensile strength (UTS) and the yield strength (YS), while dramatically reduced the elongation (El). Prismatic slip and twinning were the main deformation mechanisms in tensile tests.


Sign in / Sign up

Export Citation Format

Share Document