In vitro protein adsorption studies on nevirapine nanosuspensions for HIV/AIDS chemotherapy

2011 ◽  
Vol 7 (3) ◽  
pp. 333-340 ◽  
Author(s):  
Ranjita Shegokar ◽  
Mirko Jansch ◽  
Kamalinder K. Singh ◽  
Rainer H. Müller
1999 ◽  
Vol 25 (8) ◽  
pp. 1109-1115 ◽  
Author(s):  
Robert L. Johnston ◽  
David J. Spalton ◽  
Ali Hussain ◽  
John Marshall

2017 ◽  
Vol 55 (2) ◽  
pp. 249-258 ◽  
Author(s):  
Sathyamoorthy Nandhakumar ◽  
Magharla Dasaratha Dhanaraju ◽  
Vankayalu Devendran Sundar ◽  
Battu Heera

2019 ◽  
Vol 26 (5) ◽  
pp. 339-347 ◽  
Author(s):  
Dilani G. Gamage ◽  
Ajith Gunaratne ◽  
Gopal R. Periyannan ◽  
Timothy G. Russell

Background: The dipeptide composition-based Instability Index (II) is one of the protein primary structure-dependent methods available for in vivo protein stability predictions. As per this method, proteins with II value below 40 are stable proteins. Intracellular protein stability principles guided the original development of the II method. However, the use of the II method for in vitro protein stability predictions raises questions about the validity of applying the II method under experimental conditions that are different from the in vivo setting. Objective: The aim of this study is to experimentally test the validity of the use of II as an in vitro protein stability predictor. Methods: A representative protein CCM (CCM - Caulobacter crescentus metalloprotein) that rapidly degrades under in vitro conditions was used to probe the dipeptide sequence-dependent degradation properties of CCM by generating CCM mutants to represent stable and unstable II values. A comparative degradation analysis was carried out under in vitro conditions using wildtype CCM, CCM mutants and two other candidate proteins: metallo-β-lactamase L1 and α -S1- casein representing stable, borderline stable/unstable, and unstable proteins as per the II predictions. The effect of temperature and a protein stabilizing agent on CCM degradation was also tested. Results: Data support the dipeptide composition-dependent protein stability/instability in wt-CCM and mutants as predicted by the II method under in vitro conditions. However, the II failed to accurately represent the stability of other tested proteins. Data indicate the influence of protein environmental factors on the autoproteolysis of proteins. Conclusion: Broader application of the II method for the prediction of protein stability under in vitro conditions is questionable as the stability of the protein may be dependent not only on the intrinsic nature of the protein but also on the conditions of the protein milieu.


2020 ◽  
Vol 17 (4) ◽  
pp. 448-456 ◽  
Author(s):  
Victor B. Oti

The use of Antiretroviral drugs in treating HIV/ AIDS patients has enormously increased their life spans with serious disadvantages. The virus infection still remains a public health problem worldwide with no cure and vaccine for the viral agent until now. The use of nanoparticles (NPs) for the treatment and prevention of HIV/AIDS is an emerging technology of the 21st century. NPs are solid and colloid particles with 10 nm to <1000 nm size range; although, less than 200 nm is the recommended size for nanomedical usage. There are NPs with therapeutic capabilities such as liposomes, micelles, dendrimers and nanocapsules. The particle enters the body mainly via oral intake, direct injection and inhalation. It has been proven to have potentials of advancing the prevention and treatment of the viral agent. Certain NPs have been shown to have selftherapeutic activity for the virus in vitro. Strategies that are novel are emerging which can be used to improve nanotechnology, such as genetic treatment and immunotherapy. In this review, nanoparticles, the types and its characteristics in drug delivery were discussed. The light was furthermore shed on its implications in the prevention and treatment of HIV/AIDS.


PLoS ONE ◽  
2009 ◽  
Vol 4 (4) ◽  
pp. e5185 ◽  
Author(s):  
A. Sesilja Aranko ◽  
Sara Züger ◽  
Edith Buchinger ◽  
Hideo Iwaï

Sign in / Sign up

Export Citation Format

Share Document