Piezoelectric thin film on glass fiber fabric with structural hierarchy: An approach to high-performance, superflexible, cost-effective, and large-scale nanogenerators

Nano Energy ◽  
2019 ◽  
Vol 59 ◽  
pp. 745-753 ◽  
Author(s):  
Sibo He ◽  
Wen Dong ◽  
Yiping Guo ◽  
Lin Guan ◽  
Hongyuan Xiao ◽  
...  
Author(s):  
C.K. Wu ◽  
P. Chang ◽  
N. Godinho

Recently, the use of refractory metal silicides as low resistivity, high temperature and high oxidation resistance gate materials in large scale integrated circuits (LSI) has become an important approach in advanced MOS process development (1). This research is a systematic study on the structure and properties of molybdenum silicide thin film and its applicability to high performance LSI fabrication.


2018 ◽  
Vol 281 ◽  
pp. 616-621
Author(s):  
Wei Qiang Wang ◽  
Jia Qi Niu ◽  
Yan Su

We present a simple and cost effective method for the design and fabrication of electrowetting devices using a nanocomposite thin film of BaTiO3 and Teflon-AF as the dielectric layer to achieve low voltage operation. The nanocomposite film is prepared by using Teflon-AF as matrix and BaTiO3 nanoparticles as the filler material. The solution is spin coated to deposit thin film on metal electrodes. The characterization results show that the nanocomposite thin film can serve as the dielectric for EWOD with a high dielectric constant and a crack free hydrophobic film. To test the electrowetting effect, the variation of droplet contact angle achieved with DC voltage, AC voltage and AC frequency change are fully experimented. The EWOD device with nanocomposite dielectric layer also manipulates water droplet at low driving voltages. This study shows the potential of using ferroelectric nanocomposite film as the dielectric layer in high-performance EWOD devices.


Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5558
Author(s):  
Dimitra Vernardou ◽  
Charalampos Drosos ◽  
Andreas Kafizas ◽  
Martyn E. Pemble ◽  
Emmanouel Koudoumas

The need for clean and efficient energy storage has become the center of attention due to the eminent global energy crisis and growing ecological concerns. A key component in this effort is the ultra-high performance battery, which will play a major role in the energy industry. To meet the demands in portable electronic devices, electric vehicles, and large-scale energy storage systems, it is necessary to prepare advanced batteries with high safety, fast charge ratios, and discharge capabilities at a low cost. Cathode materials play a significant role in determining the performance of batteries. Among the possible electrode materials is vanadium pentoxide, which will be discussed in this review, due to its low cost and high theoretical capacity. Additionally, aqueous electrolytes, which are environmentally safe, provide an alternative approach compared to organic media for safe, cost-effective, and scalable energy storage. In this review, we will reveal the industrial potential of competitive methods to grow cathodes with excellent stability and enhanced electrochemical performance in aqueous media and lay the foundation for the large-scale production of electrode materials.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ted Sian Lee ◽  
Ean Hin Ooi ◽  
Wei Sea Chang ◽  
Ji Jinn Foo

AbstractThe centerline streamwise and cross-sectional (x/Dh = 0.425) turbulence characteristics of a 2D planar space-filling square-fractal-grid (SFG) composed of self-similar patterns superimposed at multiple length-scales is experimentally unveiled via piezoelectric thin-film flapping velocimetry (PTFV). The fluid–structure-interaction between a flexible piezoelectric thin-film and SFG-generated turbulent flow at ReDh = 4.1 × 104 is investigated by analysis of the thin-film’s mechanical response. Measurements of the thin-film-tip deflection δ and induced voltage V demonstrate increasing flow fluctuation strength in the turbulence generation region, followed by rapid decay further downstream of the SFG. Interestingly, SFG-induced turbulence enables the generation of maximum centerline thin-film’s response (Vrms, δrms) and millinewton turbulence-forcing (turbulence-induced excitation force acting on the thin-film) Frms which are respectively, 7× and 2× larger than the classical square-regular-grid of similar blockage ratio. The low frequency, large-scale energy-containing eddies at SFG’s central opening plays a critical role in driving the thin-film vibration. Most importantly, the SFG-generated turbulence at (y/T = 0.106, z/T = 0.125) away from the centerline allows equivalent mechanical characteristics of turbulence generation and decay, with peak of 1.9× nearer from grid. In short, PTFV provides a unique expression of the SFG-generated turbulence, of which, the equivalent turbulence length-scale and induced-forcing deduced could aid in deciphering the flow dynamics for effective turbulence management.


2021 ◽  
pp. 096739112110206
Author(s):  
A Tamer Erturk ◽  
Eser Yarar ◽  
Fahri Vatansever ◽  
Alp Eren Sahin ◽  
Mert Kilinçel ◽  
...  

Fiber-reinforced plastics are known as advanced composite materials thanks to their high strength and lightweight features. Carbon fiber reinforced polymers (CFRPs) are one of the high-performance and high-cost fiber-reinforced polymer (FRPs) materials. They are used in several high-performance engineering applications such as motorsports, marine, aviation, energy and defense industry. The cost of carbon fiber is higher compared to many other materials, more competitive and cost-effective productions will spur the demand for composite parts exponentially. Thus, hybrid laminate composite containing carbon and glass fiber materials were manufactured as an alternative for CFRP materials. Because using glass fiber prepreg instead of carbon fiber prepreg will lead the material to become cheaper. However, machining of the FRP materials is still an important issue. For this reason, the present study is focused on the mechanical and machining performance of the polymer hybrid and carbon fiber epoxy composites.


2016 ◽  
Vol 4 (10) ◽  
pp. 3798-3805 ◽  
Author(s):  
Jiahua Tao ◽  
Leilei Chen ◽  
Huiyi Cao ◽  
Chuanjun Zhang ◽  
Junfeng Liu ◽  
...  

A simple and cost-effective co-electrodeposition process has been demonstrated to fabricate high-performance Cu2ZnSnS4 (CZTS) photovoltaic materials with composition tunability and phase controllability.


COSMOS ◽  
2009 ◽  
Vol 05 (01) ◽  
pp. 59-77
Author(s):  
YUNING LI ◽  
BENG S. ONG

Organic thin film transistors (OTFTs) are promising candidates as alternatives to silicon TFTs for applications where light weight, large area and flexibility are required. OTFTs have shown potential for cost effective fabrication using solution deposition techniques under mild conditions. However, two major issues must be addressed prior to the commercialization of OTFT-based electronics: (i) low charge mobilities and (ii) insufficient air stability. This article reviews recent progress in the design and development of thiophene-based polymer semiconductors as channel materials for OTFTs. To date, both high performance p-type and n-type thiophene-based polymers with benchmark charge carrier mobility of > 0.5 cm2 V-1 s-1 have been archived, which bring printed OTFTs one step closer to commercialization.


Author(s):  
Hadjira Tayoub ◽  
Baya Zebentouta ◽  
Zineb Benamara

   Low-temperature polycrystalline silicon thin film transistors (poly-Si TFTs) have been studied because of their high performance in Active Matrix Liquid Crystal Displays (AMLCD's) and Active Matrix Organic Light-Emitting Diode (AMOLED) applications. The purpose of this work is to simulate the impact of varying the electrical and physical parameters (the interface states, active layer's thickness and BBT model) in the transfer characteristics of poly-Si TFT to extract the electrical parameters like the threshold voltage, the mobility and to evaluate the device performance. The device was simulated using ATLAS software from Silvaco, the results show that the electrical and physical parameters of poly-Si TFT affect significantly its transfer characteristics, choosing suitable parameters improve high-performance transistor. Such results make the designed structure a promising element for large-scale electronics applications.      


Sign in / Sign up

Export Citation Format

Share Document