Hierarchically architected polydopamine modified BaTiO3@P(VDF-TrFE) nanocomposite fiber mats for flexible piezoelectric nanogenerators and self-powered sensors

Nano Energy ◽  
2020 ◽  
Vol 70 ◽  
pp. 104516 ◽  
Author(s):  
Xiaoyang Guan ◽  
Bingang Xu ◽  
Jianliang Gong
Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6748
Author(s):  
Xinran Zhou ◽  
Kaushik Parida ◽  
Oded Halevi ◽  
Shlomo Magdassi ◽  
Pooi See Lee

With the rapid development of wearable electronic systems, the need for stretchable nanogenerators becomes increasingly important for autonomous applications such as the Internet-of-Things. Piezoelectric nanogenerators are of interest for their ability to harvest mechanical energy from the environment with its inherent polarization arising from crystal structures or molecular arrangements of the piezoelectric materials. In this work, 3D printing is used to fabricate a stretchable piezoelectric nanogenerator which can serve as a self-powered sensor based on synthesized oxide–polymer composites.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2344
Author(s):  
Deepalekshmi Ponnamma ◽  
Mariem Mohammed Chamakh ◽  
Abdulrhman Mohmmed Alahzm ◽  
Nisa Salim ◽  
Nishar Hameed ◽  
...  

Flexible piezoelectric nanogenerators (PENG) are widely applied to harvest sustainable energy from multiple energy sources. The rational and simple design of PENG have great potential in soft electronics. Here we design a highly flexible PENG using the polyvinylidene fluoride (PVDF) and its copolymer, polyvinylidene hexafluoropropylene (PVDF-HFP) with two nanoarchitectures of semiconducting metal oxides, TiO2 and ZnO. The nanotubes of TiO2 and nanoflowers of ZnO are embedded in these different polymeric media by solvent mixing, and new fiber mats are generated by coaxial electrospinning technique. This process aligns the dipoles of polymers and nanomaterials, which is normally a pre-requisite for higher piezo potential. With excellent mechanical strength and flexibility, the tailored lightweight fiber mats are capable of producing good output voltage (a maximum of 14 V) during different mechanical vibrations at various frequencies and in response to human motions. The hybrid nanocomposite PENG is durable and inexpensive and has possible applications in wearable electronics.


2006 ◽  
Vol 66 (14) ◽  
pp. 2436-2441 ◽  
Author(s):  
R. Luoh ◽  
H. Thomas Hahn

2020 ◽  
Vol 10 (10) ◽  
pp. 3493
Author(s):  
Minjung Kim ◽  
Vignesh Krishnamoorthi Kaliannagounder ◽  
Afeesh Rajan Unnithan ◽  
Chan Hee Park ◽  
Cheol Sang Kim ◽  
...  

Energy harvesting technologies have found significant importance over the past decades due to the increasing demand of energy and self-powered design of electronic and implantable devices. Herein, we demonstrate the design and application of in situ poled highly flexible piezoelectric poly vinylidene fluoride (PVDF) graphene oxide (GO) hybrid nanofibers in aligned mode for multifaceted applications from locomotion sensors to self-powered motion monitoring. Here we exploited the simplest and most versatile method, called electrospinning, to fabricate the in situ poled nanofibers by transforming non-polar α-phase of PVDF to polar β- phase structures for enhanced piezoelectricity under high bias voltage. The flexible piezoelectric device fabricated using the aligned mode generates an improved output voltage of 2.1 V at a uniform force of 12 N. The effective piezoelectric transduction exhibited by the proposed system was tested for its multiple efficacies as a locomotion detector, bio-e-skin, smart chairs and so on.


2015 ◽  
Vol 25 (21) ◽  
pp. 3203-3209 ◽  
Author(s):  
Ju-Hyuck Lee ◽  
Hong-Joon Yoon ◽  
Tae Yun Kim ◽  
Manoj Kumar Gupta ◽  
Jeong Hwan Lee ◽  
...  

2014 ◽  
Vol 53 (5) ◽  
pp. 820-828 ◽  
Author(s):  
Libin Sheng ◽  
Rongjia Jiang ◽  
Yu Zhu ◽  
Yali Ji

Sign in / Sign up

Export Citation Format

Share Document