In vitro antioxidant and anticancer activities of cupric oxide nanoparticles synthesized using spinach leaves extract

2022 ◽  
Vol 29 ◽  
pp. 100815
Hala Al-Jawhari ◽  
Hanan Bin-Thiyab ◽  
Nihal Elbialy
2019 ◽  
Vol 6 (2) ◽  
pp. 432-443
J. Vassallo ◽  
K. Tatsi ◽  
R. Boden ◽  
R. D. Handy

This study looks at the potential for ingested nanomaterials dosed in soil, to become bioaccessible for human intestinal absorption.

2021 ◽  
Chetan Kumar ◽  
Rajnesh Kumar Sharma

Abstract Present study was aimed to investigate the effect of temperature on the shape and size of nanoparticles and related cytotoxicity of these particles on ovarian granulosa cells. Cupric oxide nanoparticles (CuONPs) were synthesized using a simple, efficient, and reproducible precipitation method involving reduction of Cu metal salt with sodium hydroxide and then incubation of the precipitates at 70oC for 5 hrs. Subsequently, this prepared sample was divided into 3 subsamples and incubated at 3 different temperatures i.e. 70oC, 150oC, and 350oC for a time duration of 5 hrs. to study the effect of temperature on the particles. The products were characterized by XRD, FTIR, HRTEM, and FESEM. Characterization of the particles revealed that all particles were monoclinic crystalline in nature and had a size range from 9 nm - 60 nm. Particles were of different shapes; spherical, needle, and capsule. Toxicity of each particle was determined on granulosa cells by exposing them for 24 hrs. at 2 different doses. Toxicological results showed the size and shape-related toxicity of nanoparticles; particles which were spherical shape were significantly more toxic than capsule-shaped particles.

2020 ◽  
Vol 10 (2) ◽  
pp. 213-220 ◽  
Mahmoud Abudayyak ◽  
Elif Guzel ◽  
Gül Özhan

Purpose: The wide application of cupric oxide nanoparticles (copper (II) oxide, CuO-NPs) in various fields has increased exposure to the kind of active nanomaterials, which can cause negative effects on human and environment health. Although CuO-NPs were reported to be harmful to human, there is still a lack information related to their toxic potentials. In the present study, the toxic potentials of CuO-NPs were evaluated in the liver (HepG2 hepatocarcinoma) and intestine (Caco-2 colorectal adenocarcinoma) cells. Methods: After the characterization of particles, cellular uptake and morphological changes were determined. The potential of cytotoxic, genotoxic, oxidative and apoptotic damage was investigated with several in vitro assays. Results: The average size of the nanoparticles was 34.9 nm, about 2%-5% of the exposure dose was detected in the cells and mainly accumulated in different organelles, causing oxidative stress, cell damages, and death. The IC50 values were 10.90 and 10.04 µg/mL by MTT assay, and 12.19 and 12.06 µg/mL by neutral red uptake (NRU) assay, in HepG2 and Caco-2 cells respectively. Apoptosis assumes to the main cell death pathway; the apoptosis percentages were 52.9% in HepG2 and 45.5% in Caco-2 cells. Comet assay result shows that the highest exposure concentration (20 µg/mL) causes tail intensities about 9.6 and 41.8%, in HepG2 and Caco-2 cells, respectively. Conclusion: CuO-NPs were found to cause significant cytotoxicity, genotoxicity, and oxidative and apoptotic effects in both cell lines. Indeed, CuO-NPs could be dangerous to human health even if their toxic mechanisms should be elucidated with further studies.

2020 ◽  
Vol 9 (1) ◽  
Khwaja Salahuddin Siddiqi ◽  
M. Rashid ◽  
A. Rahman ◽  
Tajuddin ◽  
Azamal Husen ◽  

Abstract Background Biogenic fabrication of nanoparticles from naturally occurring biomaterials involves plants, herbs, bacteria and fungi using water as neutral solvent, while chemical synthesis involves hazardous chemicals and leaves unwanted byproduct which unnecessarily pollute the environment. In order to prevent atmospheric pollution a safe, clean and green strategy for the synthesis of cupric oxide nanoparticles from aqueous leaf extract of Diospyros montana has been employed. D. montana of Ebenaceae family is a poisonous tropical plant which grows wild in Asia. Its extract is commonly known as fish poison. The rate of formation of NPs from plant extract is thought to be facile and rapid relative to those formed by fungi and bacteria, but it depends on the concentration of reducing chemicals available in the extract. We report, in this communication, a benign method of biogenic synthesis of cupric oxide nanoparticles (CuO-NPs) from leaf extract of D. montana and their characterization by UV–visible, FTIR, SEM, TEM, DLS, SAED and EDX analyses. Their antimicrobial activity against seven Gram-positive and four Gram-negative bacteria has been screened. Photocatalytic degradation of methylene blue by ascorbic acid as reducing agent and cupric oxide nanoparticles as catalyst has been done under sunlight. Results Cupric oxide nanoparticles of varying size starting from 5.9 to 21.8 nm have been fabricated from aqueous leaf extract of D. montana at room temperature. The pure extract absorbs at 273 nm while CuO-NPs exhibit a broad peak at 320 nm. FTIR spectrum of the leaf extract shows the presence of a double quinonoid molecule. There are three types of CuO-NPs with different hydrodynamic radii. Their average hydrodynamic radii fall between 495 ± 346 nm. SEM and TEM images show spherical shaped CuO-NPs of different size. SAED suggests crystalline nature of CuO-NPs. They are highly polydispersed in solution. EDX analysis reveals the presence of Ca, C, O, Na and Si besides copper. Oxygen content is over 50% by mass. Reduction of methylene blue dye (MB) by ascorbic acid as reducing agent, in presence of CuO-NPs as catalyst, has been achieved in 90 s at room temperature while their reduction by ascorbic acid alone takes more than 10 min. Antibacterial activity of CuO-NPs against seven Gram-positive (Staphylococcus aureus, Streptococcus mutans, Streptococcus pyogenes, Streptococcus viridans, Staphylococcus epidermidis, Corynebacterium xerosis and Bacillus cereus) and four Gram-negative bacterial strains (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Proteus vulgaris) has been investigated. The results indicated that NPs are highly effective against growth inhibition of Gram-positive bacteria than Gram-negative bacteria. Copper oxide nanoparticles are even more toxic than the standard antibiotic, norfloxacin. Conclusion In this project cupric oxide NPs of 5.9–21.8 nm have been fabricated from aqueous leaf extract of D. montana. It is most inexpensive and easy process to fabricate NPs from plant material because no toxic chemicals are used. Since CuO-NPs are toxic to several Gram-positive and Gram-negative bacterial strains, attempt may be made to use them as antibacterial agent to protect food, vegetable and crops. Also, the reduction of methylene blue dye by ascorbic acid as reducing agent in presence of CuO NPs as catalyst has been done very efficiently at a rapid rate which prompts us to use them as catalyst in the reduction of dyes, other toxic materials and industrial effluents. Further investigation of other beneficial properties of CuO-NPs can also be explored.

2017 ◽  
Vol 35 (6) ◽  
pp. 636-646 ◽  
Paria Amirian ◽  
Edris Bazrafshan ◽  
Abolfazl Payandeh

Leachate is the liquid formed when waste breaks down in the landfill and water filters through that waste. This liquid is very toxic and can pollute the land, ground water, and water resources. In most countries, it is mandatory for landfills to be protected against leachate. In addition to all other harms to the environment, disposal of raw landfill leachate can be a major source of hazard to closed water bodies. Hence, treatment of landfill leachate is considered an essential step prior to its discharge from source. This article describes the sonocatalytic degradation of chemical oxygen demand in landfill leachate using cupric oxide nanoparticles as sonocatalyst (cupric oxide/ultrasonic) and aims to establish this method as an effective alternative to currently used approaches. An ideal experimental design was carried out based on a central composite design with response surface methodology. The response surface methodology was used to evaluate the effect of process variables including pH values (3, 7, 11), cupric oxide nanoparticles dose (0.02, 0.035, 0.05 g), reaction time (10, 35, 60 minutes), ultrasonic frequency (35, 37, 130 KHz), and their interaction towards the attainment of their optimum conditions. The derived second-order model, including both significant linear and quadratic terms, seemed to be adequate in predicting responses (R2 = 0.9684 and prediction R2 = 0.9581). The optimum conditions for the maximum chemical oxygen demand sonocatalytic degradation of 85.82% were found to be pH 6.9, cupric oxide nanoparticles dosage of 0.05 gr L−1, and the ultrasonic frequency of 130 kHz at a contact time of 10 min.

Sign in / Sign up

Export Citation Format

Share Document