In situ near-field microwave characterization and quantitative evaluation of phase change inclusion in honeycomb composites

2021 ◽  
pp. 102469
Author(s):  
Peiyu Wang ◽  
Licheng Zhou ◽  
Guo Liu ◽  
Yongmao Pei
2013 ◽  
Vol 815 ◽  
pp. 367-370 ◽  
Author(s):  
Xiao Qiu Song ◽  
Yue Xia Li ◽  
Jing Wen Wang

Hexadecane microcapsule phase change materials were prepared by the in-situ polymerization method using hexadecane as core materials, urea-formaldehyde resin and urea-formaldehyde resin modified with melamine as shell materials respectively. Effect of melamine on the properties of microcapsules was studied by FTIR, biomicroscopy (UBM), TGA and HPLC. The influences of system concentration, agitation speed and mass ratio of wall to core were also investigated. The results indicated that hexadecane was successfully coated by the two types of shell materials. The addition of melamine into the urea-formaldehyde resin microcapsule reduced microcapsule particle size and microencapsulation efficiency. The influences of factors such as system concentration, agitation speed and mass ratio of wall to core to different wall materials microcapsules presented different variety trends of the microcapsule particle size.


Author(s):  
Norberto Pe´rez Rodri´guez ◽  
Erik Rosado Tamariz ◽  
Rafael Garci´a Illescas

This work is focused on the diagnosis of behavior, from the point of view of control emissions and noise level, of a power Turbogas plant during the process of commissioning, to guarantee that its operation complies with national and international standards. The environmental diagnosis of the power plant was developed as part of the performance evaluation of the unit. The conditions of the unit evaluation include operation at base load and partial load, as well as time periods for load changes. The evaluated power plant consists of an aeroderivative gas turbine installed in a simple cycle, operating with a cooling system (chiller) installed in the urban zone of Mexico City. Therefore, it should comply with the legislation and regulations of the city concerning air pollution and allowed noise, besides the international standards established by the manufacturer. The study includes emissions measurements using a Continuous Emissions Monitoring System installed in-situ, previously calibrated and checked during and after the test which was found inside the permissible deviation of 3%. Measurements were recorded at intervals of 5 minutes during test periods of 110 minutes for each load and 45 minutes for load changes. On the other hand, noise pressure evaluation was carried out in near field as well as far field produced by the power plant during operation. Measurements were carried out by using precision instruments installed specifically for it. A temporary system for obtaining data was used to monitoring the environmental conditions every 30 seconds. It was possible to verify that the turbogenerator complies with all noise levels and contaminant emissions requirements and regulations according to the limits established by the manufacturer and national and international standards.


2013 ◽  
Vol 4 ◽  
pp. 632-637 ◽  
Author(s):  
Tsung Sheng Kao ◽  
Yi Guo Chen ◽  
Ming Hui Hong

By utilizing the strongly induced plasmon coupling between discrete nano-antennas and quantitatively controlling the crystalline proportions of an underlying Ge2Sb2Te5 (GST) phase-change thin layer, we show that nanoscale light localizations in the immediate proximity of plasmonic nano-antennas can be spatially positioned. Isolated energy hot-spots at a subwavelength scale can be created and adjusted across the landscape of the plasmonic system at a step resolution of λ/20. These findings introduce a new approach for nano-circuitry, bio-assay addressing and imaging applications.


2021 ◽  
Author(s):  
Sera Hong ◽  
Joon Myong Song

A 3D printing-based HepG2 liver spheroid culture model was developed for in situ quantitative evaluation and high-content monitoring of drug-induced hepatotoxicity.


2019 ◽  
Vol 105 (6) ◽  
pp. 960-969 ◽  
Author(s):  
Spyros Brezas ◽  
Volker Wittstock

Towards the establishment of traceability in sound power in airborne sound, the present study focuses on the dissemination procedure. Aerodynamic reference sound sources were studied as potential transfer standards. Initially, the sources were examined in the up-to-present requirements. The core of the study is the correction required for the transition from calibration to in situ conditions. The influence of atmospheric pressure, ambient temperature and fan rotation speed was investigated and the corresponding correction was determined. A comparison to an existing correction was also performed. Near field effects were another part of the study. The related uncertainty was estimated in a transparent approach. The dependency of the uncertainty on the in situ and calibration condition values is also presented.


Sign in / Sign up

Export Citation Format

Share Document