scholarly journals Numerical simulation of rock breaking by PDC bit in hot dry rocks

2019 ◽  
Vol 6 (6) ◽  
pp. 619-628 ◽  
Author(s):  
Xiaohua Zhu ◽  
Zhaowang Dan
2020 ◽  
Vol 2020 ◽  
pp. 1-16 ◽  
Author(s):  
Zhiwen Wang ◽  
Qingliang Zeng ◽  
Zhenguo Lu ◽  
Lirong Wan ◽  
Xin Zhang ◽  
...  

The new method of rock breaking based on the combination of circular sawblade and conical pick was proposed to improve the effectiveness of hard rock breaking. The numerical simulation method was applied to research the conical pick cutting arc rock plate by ANSYS/LS-DYNA. The conical pick cutting arc rock plate numerical simulation model was established to research the influence of arc rock plate structural parameters and cutting parameters on cracks formation and propagation of the arc rock plate and the cutting force in the process of conical pick cutting arc rock plate. The amount of cracks is positively correlated with arc rock plate thickness, the cutting speed, and distance of cutting point to arc rock plate central axis and negatively correlated with the cutting angle. The mean peak cutting force is positively correlated with the thickness of arc rock plate and the distance of cutting point to arc rock plate central axis; however, it is negatively correlated with the arc rock plate height and width and cutting angle of conical pick. The simulation results can be used to predict the conical pick work performance with various cutting parameters and structural parameters.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Changping Li ◽  
Longchen Duan ◽  
Songcheng Tan ◽  
Victor Chikhotkin ◽  
Xiaohui Wang

Electropulse rock breaking has wide application prospects in hard rock drilling and ore breaking. At present, there are no suitable physical mathematical models that describe electropulse boring (EPB) processes under confining pressures. In this paper, a high-voltage electropulse breakdown damage model is established for granite, which includes three submodels. It considers electric field distortions inside the rock, and an electric field distribution coefficient is introduced in the electro-breakdown model. A shock-wave model is also constructed and solved. To simulate the heterogeneity of rocks, EPB rock breaking in deep environments is simulated using the two-dimensional Particle Flow Code (PFC2D) program. The solved shock wave is loaded into the model, and confining pressure is applied by the particle servo method. An artificial viscous boundary is used in the numerical simulation model. Using this approach, a complete numerical simulation of electropulse granite breaking is achieved. Breakdown strength and the influences of physical and mechanical parameters on it are also obtained. Time-varying waveforms of electrical parameters are obtained, and the effect of confining pressure on EPB is also described.


2020 ◽  
Vol 13 (5) ◽  
pp. 122-131
Author(s):  
Yu Jinping ◽  
◽  
Zou Deyong ◽  
Sun Yuanxiu ◽  
Zhang Yin

Rock breaking is a complex physical process that can be influenced by various factors, such as geometrical shape and cutting angle of rock breaking tools. Experimental study of the rock breaking mechanism of personalized bits is restricted due to long cycle and high cost. This study simulated the rock breaking mechanism of polycrystalline diamond compact (PDC) bit by combining finite element method and experiment. The simulation was performed to shorten the period and reduce the cost of studying the rock breaking mechanism of PDC bits. A rock breaking finite element model for sting cutters of personalized PDC bit was established to simulate the rock breaking process. The crack propagation pattern, dynamic stress of rock breaking, and rock breaking mechanism of sting cutters of personalized PDC bit were analyzed. The correctness of the simulation results was verified through experiments. Results demonstrate that the rock breaking load increases with the crack propagation in the fracture initiation and propagation stages, with the maximum tangential force of 1062.5 N and maximum axial force of 1850.0 N. The load changes in a small range when the crack penetrates the rock, with the tangential force of 125.0–500.0 N and axial force of 375.0–875.0 N. The rock breaking mechanism of the sting cutters of bit is consistent with maximum tensile stress theory. The rock begins to break when the tensile stress of rock is 36.9 MPa. The sting cutters of personalized PDC bit have better wear resistance than the sting cutters of conventional bit. The average wear rates of personalized PDC and conventional bits are 1.74E-4 and 2.1E-4 mm/m, respectively. This study serves as reference for shortening the study period of rock breaking mechanism, efficiently designing personalized PDC bit structure, reducing bit wear, and enhancing rock breaking efficiency.


2014 ◽  
Vol 952 ◽  
pp. 186-189
Author(s):  
Xian Zhong Yi ◽  
Song Lin Yi ◽  
Hui Shu ◽  
Yuan Qiang Ji ◽  
Sheng Zong Jiang

The technology of high pressure water jet in radial drilling has currently been used widely at home and abroad. A numerical simulation and analysis of the internal and external flow fields of jet nozzle will 1ay the foundation for the further study of high pressure water jet rock breaking. The physical and mathematical models of axial-symmetrical submerged jet rock breaking with single nozzle were established. And a numerical simulation of the internal and external flow fields of high pressure water jet nozzle in radial drilling was conducted with the Fluent software. The 1aws of the internal and external flow fields were analyzed in different jet distances and inlet flow rates.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Minghui Wei ◽  
Chenghuai Wu ◽  
Yanxi Zhou

The addition of a polymer to the jet medium enhances its ability to break rock, and the structure of the nozzle plays a vital role in the full utilization of energy. In this paper, a self-propelled porous jet bit with a support plate is designed, which can prevent the drill bit from jamming due to the jet nozzle against the bottom of the well during the drilling process. And the structural design of the cone-converging nozzle is applied to the forward center nozzle. The polymer additive jet flow field and the pure water jet flow field were compared by numerical simulation and experimental investigation. The results show that the polymer additive jet has a longer isokinetic core, and the rock-breaking volume of the polymer additive jet is much larger than that of the pure water jet, and the optimal spray distance is increased. The forward central jet with the conical convergent nozzle structure has more efficient rock-breaking ability.


2021 ◽  
Vol 719 (4) ◽  
pp. 042067
Author(s):  
Jinguo Cheng ◽  
Hua Jiang ◽  
Xingtong Qu ◽  
Yusheng Jiang ◽  
Changhao Li

2014 ◽  
Vol 6 ◽  
pp. 868041 ◽  
Author(s):  
Liu Songyong ◽  
Chen Junfeng ◽  
Liu Xiaohui

In the process of hard rock breaking, the conical pick bears great cutting force and wear, and the cutting efficiency is lower. Thus different combination ways of water jet and conical pick were proposed to solve this issue; for instance, water jet placed in the front of pick (JFP) and water jet through the center of pick (JCP) was researched by numerical simulation and experiments in this paper. First, the models of rock breaking were built based on SPH combined with finite element method. Then, the stress distribution of rock and the cut force of pick were analyzed when the rock broken by the conical pick assisted with the high pressure water jet. It indicates that the effect of the JCP on rock breaking is better than the JFP. At last, experiments about rock breaking with a conical pick and the JCP were conducted to verify the reliability of the simulation. It indicates that the rock breaking with the assistance of high pressure water jet cannot only reduce the pick force, but also increase the rock crushing volume.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Chun-Liang Zhang ◽  
Ying-Xin Yang ◽  
Hai-Tao Ren ◽  
Can Cai ◽  
Yong Liu ◽  
...  

The parallel track scraping principle of conventional PDC bits largely limits the cutting efficiency and working life in deep formations. Cross-cutting polycrystalline diamond compact (PDC) bit may be an efficient drilling tool that increases the rock-breaking efficiency through both cross-cutting and alternate-cutting modes of the PDC cutter. The motion track equation of the cross-cutting PDC bit was derived by using the compound coordinate system, and the motion track was analyzed. Meanwhile, through the unit experiment and discrete element simulation, the cutting force, volume-specific load, and crack propagation were analyzed under different cutting modes. Through establishing a nonlinear dynamic model of the bit-rock system, the speed-up mechanism of the novel bit was analyzed based on rock damage, rock stress state, and motion characteristic of the bit during the rock-breaking process. Compared with unidirectional cutting, cross-cutting produces less cutting force, more brittle fracture, and a greater decrease of formation strength. The novel PDC bit can put more rock elements into a tensile stress condition than a conventional PDC bit, and the plastic energy dissipation ratio of the cross-cutting PDC bit is lower while the damage energy consumption ratio is higher than they are for conventional bits, which is beneficial to increasing the ratio of fracture failure and improving rock-breaking efficiency. Laboratory drilling tests show that the cross-cutting PDC bit can create mesh-like bottom-hole features. Drilling contrast experiments show that a mesh-like bottom-hole pattern can be obtained by using the cross-cutting PDC bit, of which the ROP is obviously higher than that of the conventional bit when drilling in sandstone or limestone formation. Meanwhile, the influence of deviation angle, weight on bit, and rock properties on cutting efficiency of the cross-cutting PDC bit are studied.


Sign in / Sign up

Export Citation Format

Share Document