scholarly journals Sensory-motor network functional connectivity in children with unilateral cerebral palsy secondary to perinatal stroke

2019 ◽  
Vol 21 ◽  
pp. 101670 ◽  
Author(s):  
K.E. Woodward ◽  
H.L. Carlson ◽  
A. Kuczynski ◽  
J. Saunders ◽  
J. Hodge ◽  
...  
2013 ◽  
Vol 20 (8) ◽  
pp. 1050-1057 ◽  
Author(s):  
B Basile ◽  
M Castelli ◽  
F Monteleone ◽  
U Nocentini ◽  
C Caltagirone ◽  
...  

Background: In multiple sclerosis (MS), the location of focal lesions does not always correlate with clinical symptoms, suggesting disconnection as a major pathophysiological mechanism. Resting-state (RS) functional magnetic resonance imaging (fMRI) is believed to reflect brain functional connectivity (FC) within specific neuronal networks. Objective: RS-fMRI was used to investigate changes in FC within two critical networks for the understanding of MS disabilities, namely, the sensory-motor network (SMN) and the default-mode network (DMN), respectively, implicated in sensory-motor and cognitive functions. Methods: Thirty-four relapsing–remitting (RR), 14 secondary progressive (SP) MS patients and 25 healthy controls underwent MRI at 3T, including conventional images, T1-weighted volumes, and RS-fMRI sequences. Independent component analysis (ICA) was employed to extract maps of the relevant RS networks for every participant. Group analyses were performed to assess changes in FC within the SMN and DMN in the two MS phenotypes. Results: Increased FC was found in both networks of MS patients. Interestingly, specific changes in either direction were observed also between RR and SP MS groups. Conclusions: FC changes seem to parallel patients’ clinical state and capability of compensating for the severity of clinical/cognitive disabilities.


2017 ◽  
Vol 118 (2) ◽  
pp. 1235-1243 ◽  
Author(s):  
Heather R. McGregor ◽  
Paul L. Gribble

We show that individual differences in preobservation brain function can predict subsequent observation-related gains in motor learning. Preobservation resting-state functional connectivity within a sensory-motor network may be used as a biomarker for the extent to which observation promotes motor learning. This kind of information may be useful if observation is to be used as a way to boost neuroplasticity and sensory-motor recovery for patients undergoing rehabilitation for diseases that impair movement such as stroke.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Giuseppina Sgandurra ◽  
Laura Biagi ◽  
Leonardo Fogassi ◽  
Elisa Sicola ◽  
Adriano Ferrari ◽  
...  

Little is known about the action observation network (AON) in children with unilateral cerebral palsy (UCP). Using fMRI, we aimed to explore AON and sensory-motor network (SMN) in UCP children and compare them to typically developed (TD) children and analyse the relationship between AON (re-)organization and several neurophysiological and clinical measures. Twelve UCP children were assessed with clinical scales and transcranial magnetic stimulation (TMS). For the fMRI study, they underwent a paradigm based on observation of complex and simple object-manipulation tasks executed by dominant and nondominant hand. Moreover, UCP and TD children carried out a further fMRI session to explore SMN in both an active motor and passive sensory task. AON in the UCP group showed higher lateralization, negatively related to performances on clinical scales, and had greater activation of unaffected hemisphere as compared to the bilateral representation in the TD group. In addition, a good congruence was found between bilateral or contralateral activation of AON and activation of SMN and TMS data. These findings indicate that our paradigm might be useful in exploring AON and the response to therapy in UCP subjects.


2019 ◽  
Author(s):  
Cristina Simon-Martinez ◽  
Ellen Jaspers ◽  
Kaat Alaerts ◽  
Els Ortibus ◽  
Joshua Balsters ◽  
...  

ABSTRACTIn children with unilateral cerebral palsy (uCP), the corticospinal tract (CST) wiring patterns may differ (contralateral, ipsilateral or bilateral), partially determining motor deficits. However, the impact of such CST wiring on functional connectivity remains unknown. Here, we explored differences in functional connectivity of the resting-state sensorimotor network in 26 uCP with periventricular white matter lesions (mean age (SD): 12.87m (±4.5), CST wiring: 9 contralateral, 9 ipsilateral, 6 bilateral) compared to 60 healthy controls (mean age (SD): 14.54 (±4.8)), and between CST wiring patterns. Functional connectivity from each M1 to three bilateral sensorimotor regions of interest (primary sensory cortex, dorsal and ventral premotor cortex) and the supplementary motor area was compared between groups (healthy controls vs. uCP; and healthy controls vs. each CST wiring group). Results from the seed-to-voxel analyses from bilateral M1 were compared between groups. Additionally, relations with upper limb motor deficits were explored. Aberrant sensorimotor functional connectivity seemed to be CST-dependent rather than specific from all the uCP population: in the dominant hemisphere, the contralateral CST group showed increased connectivity between M1 and premotor cortices, whereas the bilateral CST group showed higher connectivity between M1 and somatosensory association areas. These results suggest that functional connectivity of the sensorimotor network is CST wiring-dependent, although the impact on upper limb function remains unclear.


Author(s):  
KE Woodward ◽  
H Carlson ◽  
A Kuczynski ◽  
J Saunders ◽  
J Hodge ◽  
...  

Background: Perinatal stroke is the most common cause of hemiparetic cerebral palsy. Post-stroke plasticity is well studied in adults, but mechanisms in children are poorly understood. To better understand the relationship between functional connectivity and disability, we used rsfMRI to compare connectivity with sensorimotor dysfunction. Methods: Subjects with periventricular venous infarction were compared to controls. Resting-state BOLD signal was acquired on 3T MRI and analyzed using SPM12. Functional connectivity was computed between S1 and M1 of the left/non-lesioned and right/ lesioned hemisphere. Primary outcome was connectivity expressed as a Pearson correlation coefficient. Motor function was measured using the Assisting Hand Assessment (AHA), and Melbourne Assessment (MA). Proprioceptive function was measured using a robotic position matching task (VarXY). Results: Subjects included 17 PVI and 21 controls. AHA and MA in patients were negatively correlated with connectivity (increased connectivity=poorer performance). Correlations between AHA and connectivity between non-lesioned M1 to bilateral S1s were significant. VarXY in PVI was inversely correlated with connectivity (increased connectivity=improved performance), significantly between non-lesioned S1 and bilateral M1s. Control VarXY was positively correlated with connectivity between non-dominant S1 to bilateral M1s. Conclusions: We demonstrated significant correlations between connectivity and motor/sensory function in PVI patients. Greater insight into understanding reorganization of brain networks following perinatal stroke may facilitate personalized rehabilitation.


Author(s):  
K. C. Usha Usha ◽  
Dr. H. N. Suma

Aims: Alterations in the cerebrum structurally and functionally are triggered largely due to an increase in neuro depressive brain disorders like Alzheimer’s. This study aims is to determine these alterations in the regions of the cerebrum which are significant and distinguishing in Alzheimer’s disease subjects compared to healthy. We employ the most potential resting-state functional Magnetic Resonance Imaging (rs-fMRI) modality for this analysis. Methodology: 24 Alzheimer’s disease (AD) and 25 Healthy Controlled (HC) subjects were evaluated with rs-fMRI which is more efficient in anticipating neuronal activity changes. Thus, obtained data of all subjects were preprocessed and components of larger networks to smaller regions were extracted by independent component analysis (ICA) method. Differences in resting-state connectivity were examined for 6 networks of interest viz., Auditory network, Central Executive network, Default mode network, Silence mode network, Sensory-motor network and Visual network and their regions, which are affected due to the common symptoms of Alzheimer’s disease-like memory, thinking and behavioral changes. Statistical analysis was done with one sample t-test to check the functional connectivity activations in Resting-State Networks (RSNs) and regions of both AD & HC groups at a threshold of T>2. Finally, to obtain the abnormal sub-regions in each of the RSNs of AD a two-sample t-test was carried out at a threshold of P < .03. Results: Our method potentially identifies the functional connectivity alterations and core regions dysfunction amongst the major 6 RSNs in AD compared to HC subjects. The results also showed decreased connectivity in regions of sensory-motor and default mode networks increased connectivity in regions of central executive and silence mode network along with some of the sub-regions dysfunctions in AD. Conclusion: Modifications in functional connectivity within the major RSNs and regions have been detected which serves as a capability to determine an early biomarker and examining the disease progression.


2015 ◽  
Vol 19 ◽  
pp. S45
Author(s):  
K.E. Woodward ◽  
H. Carlson ◽  
E. Zewdie ◽  
A. Kuczynski ◽  
J. Saunders ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document